

✓ WARNING ✓

Thank you for purchasing automation equipment from Automationdirect.com®, doing business as AutomationDirect. We want your new automation equipment to operate safely. Anyone who installs or uses this equipment should read this publication (and any other relevant publications) before installing or operating the equipment.

To minimize the risk of potential safety problems, you should follow all applicable local and national codes that regulate the installation and operation of your equipment. These codes vary from area to area and usually change with time. It is your responsibility to determine which codes should be followed, and to verify that the equipment, installation, and operation is in compliance with the latest revision of these codes.

At a minimum, you should follow all applicable sections of the National Fire Code, National Electrical Code, and the codes of the National Electrical Manufacturer's Association (NEMA). There may be local regulatory or government offices that can also help determine which codes and standards are necessary for safe installation and operation.

Equipment damage or serious injury to personnel can result from the failure to follow all applicable codes and standards. We do not guarantee the products described in this publication are suitable for your particular application, nor do we assume any responsibility for your product design, installation, or operation.

Our products are not fault-tolerant and are not designed, manufactured or intended for use or resale as on-line control equipment in hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines, or weapons systems, in which the failure of the product could lead directly to death, personal injury, or severe physical or environmental damage ("High Risk Activities"). AutomationDirect specifically disclaims any expressed or implied warranty of fitness for High Risk Activities.

For additional warranty and safety information, see the Terms and Conditions section of our catalog. If you have any questions concerning the installation or operation of this equipment, or if you need additional information, please call us at 770-844-4200.

This publication is based on information that was available at the time it was printed. At AutomationDirect we constantly strive to improve our products and services, so we reserve the right to make changes to the products and/or publications at any time without notice and without any obligation. This publication may also discuss features that may not be available in certain revisions of the product.

Trademarks

This publication may contain references to products produced and/or offered by other companies. The product and company names may be trademarked and are the sole property of their respective owners. AutomationDirect disclaims any proprietary interest in the marks and names of others.

Copyright 2004, Automationdirect.com® Incorporated All Rights Reserved

No part of this manual shall be copied, reproduced, or transmitted in any way without the prior, written consent of Automationdirect.com® Incorporated. AutomationDirect retains the exclusive rights to all information included in this document.

AVERTISSEMENT

Nous vous remercions d'avoir acheté l'équipement d'automatisation de Automationdirect.com®, en faisant des affaires comme AutomationDirect. Nous tenons à ce que votre nouvel équipement d'automatisation fonctionne en toute sécurité. Toute personne qui installe ou utilise cet équipement doit lire la présente publication (et toutes les autres publications pertinentes) avant de l'installer ou de l'utiliser.

Afin de réduire au minimum le risque d'éventuels problèmes de sécurité, vous devez respecter tous les codes locaux et nationaux applicables régissant l'installation et le fonctionnement de votre équipement. Ces codes diffèrent d'une région à l'autre et, habituellement, évoluent au fil du temps. Il vous incombe de déterminer les codes à respecter et de vous assurer que l'équipement, l'installation et le fonctionnement sont conformes aux exigences de la version la plus récente de ces codes.

Vous devez, à tout le moins, respecter toutes les sections applicables du Code national de prévention des incendies, du Code national de l'électricité et des codes de la National Electrical Manufacturer's Association (NEMA). Des organismes de réglementation ou des services gouvernementaux locaux peuvent également vous aider à déterminer les codes ainsi que les normes à respecter pour assurer une installation et un fonctionnement sûrs.

L'omission de respecter la totalité des codes et des normes applicables peut entraîner des dommages à l'équipement ou causer de graves blessures au personnel. Nous ne garantissons pas que les produits décrits dans cette publication conviennent à votre application particulière et nous n'assumons aucune responsabilité à l'égard de la conception, de l'installation ou du fonctionnement de votre produit.

Nos produits ne sont pas insensibles aux défaillances et ne sont ni conçus ni fabriqués pour l'utilisation ou la revente en tant qu'équipement de commande en ligne dans des environnements dangereux nécessitant une sécurité absolue, par exemple, l'exploitation d'installations nucléaires, les systèmes de navigation aérienne ou de communication, le contrôle de la circulation aérienne, les équipements de survie ou les systèmes d'armes, pour lesquels la défaillance du produit peut provoquer la mort, des blessures corporelles ou de graves dommages matériels ou environnementaux («activités à risque élevé»). La société AutomationDirect nie toute garantie expresse ou implicite d'aptitude à l'emploi en ce qui a trait aux activités à risque élevé.

Pour des renseignements additionnels touchant la garantie et la sécurité, veuillez consulter la section Modalités et conditions de notre documentation. Si vous avez des questions au sujet de l'installation ou du fonctionnement de cet équipement, ou encore si vous avez besoin de renseignements supplémentaires, n'hésitez pas à nous téléphoner au 770-844-4200.

Cette publication s'appuie sur l'information qui était disponible au moment de l'impression. À la société AutomationDirect, nous nous efforçons constamment d'améliorer nos produits et services. C'est pourquoi nous nous réservons le droit d'apporter des modifications aux produits ou aux publications en tout temps, sans préavis ni quelque obligation que ce soit. La présente publication peut aussi porter sur des caractéristiques susceptibles de ne pas être offertes dans certaines versions révisées du produit.

Marques de commerce

La présente publication peut contenir des références à des produits fabriqués ou offerts par d'autres entreprises. Les désignations des produits et des entreprises peuvent être des marques de commerce et appartiennent exclusivement à leurs propriétaires respectifs. AutomationDirect nie tout intérêt dans les autres marques et désignations.

Copyright 2004, Automationdirect.com® Incorporated Tous droits réservés

Nulle partie de ce manuel ne doit être copiée, reproduite ou transmise de quelque façon que ce soit sans le consentement préalable écrit de la société Automationdirect.com® Incorporated. AutomationDirect conserve les droits exclusifs à l'égard de tous les renseignements contenus dans le présent document.

✓ WARNING

Warning: Read this manual thoroughly before using GS2 Series AC Motor Drives.

WARNING: AC input power must be disconnected before performing any maintenance. Do not connect or disconnect wires or connectors while power is applied to the circuit. Maintenance must be performed only by a qualified technician.

WARNING: There are highly sensitive MOS components on the printed circuit boards, and these components are especially sensitive to static electricity. To avoid damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.

WARNING: A charge may still remain in the DC-link capacitor with hazardous voltages, even if the power has been turned off. To avoid personal injury, do not remove the cover of the AC drive until all "DISPLAY LED" lights on the digital keypad are off. Please note that there are live components exposed within the AC drive. Do not touch these live parts.

WARNING: Ground the GS2 AC Drive using the ground terminal. The grounding method must comply with the laws of the country where the AC drive is to be installed. Refer to "Basic Wiring Diagram" in CHAPTER 2.

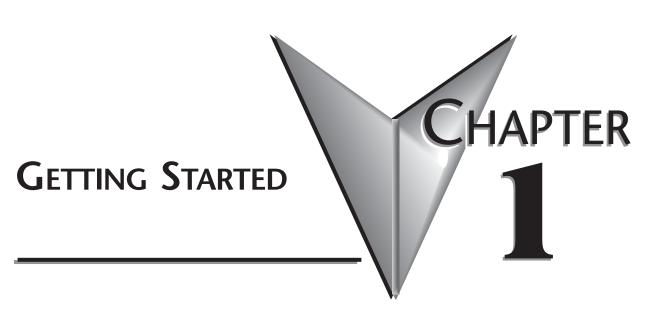
WARNING: The mounting enclosure of the AC drive must comply with EN50178. Live parts shall be arranged in enclosures or located behind barriers that meet at least the requirements of the Protective Type IP20. The top surface of the enclosures or barrier that is easily accessible shall meet at least the requirements of the Protective Type IP40. Users must provide this environment for GS2 Series AC Drive.

Warning: The AC drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC drive output terminals T1, T2, and T3 directly to the AC main circuit power supply.

Please include the Manual Number and the Manual Issue, both shown below, when communicating with Technical Support regarding this publication.

Manual Number: GS2-M

Issue: First Edition, Revision C


Issue Date: 12/2006

Publication History					
Issue	Date	Description of Changes			
First Edition	6/07/02	Original			
First Edition, Revision A	6/30/03	Made minor changes throughout. Update for Firmware Version 1.04 Added parameter 7.00 (PID) functionality.			
First Edition, Revision B	1/28/05	Added 115V drives; Made minor changes throughout.			
First Edition, Revision C	12/2006	Added 575V drives and accessories; Added Ch1 Drives Purpose section; Added short circuit withstand specifications and notes; Changed Ch5 DL PLC control program example; Added new AppxB PLC analog modules; Miscellaneous clarification revisions throughout.			

Get	ting Started
	Manual Overview1–2
	GS2 AC Drive Introduction
	GS2 AC Drive Specifications1–5
Inst	allation and Wiring2-1
	Ambient Conditions2–2
	Installation
	Dimensions
	GS2 Circuit Connections
	External Accessories2–12
Key	pad Operation and Quickstart
	The GS2 Digital Keypad
	GS2 Quickstart
AC	Drive Parameters
	GS2 Parameter Summary4–2
	Detailed Parameter Listings
	Motor Parameters
	Ramp Parameters4–13
	Volts/Hertz Parameters4–19
	Digital Parameters4–22
	Analog Parameters4–32
	Preset Parameters
	Protection Parameters
	PID Parameters
	Display Parameters
	Communication Parameters

GS2 Modbus Communications
Communication Parameters Summary5–2
GS2 Parameter Memory Addresses
GS2 Status Addresses5–9
Communicating with <i>Direct</i> Logic PLCs5–12
Communicating with Third-party Devices
Maintenance and Troubleshooting6–
Maintenance and Inspection
Troubleshooting6–3
Accessories
Accessories Part Numbering
Line Reactors
Braking Resistors
EMI Input Filters
RF Filters
Fuses and Fuse Kits
GS-EDRV Ethernet Interface
GS Drive Configuration Software
Miscellaneous Accessories
Using GS2 AC Drives with DirectLOGIC PLCsB-
Compatible DirectLOGIC PLCs and Modules
Typical Connections to the GS2 Series AC DriveB-7
Index

In This Chapter...

Manual Overview
Overview of this Publication1–2
Who Should Read This Manual1–2
Supplemental Publications1–2
Technical Support1–2
Special Symbols1–2
GS2 AC Drive Introduction1–3
Purpose of AC Drives
Unpacking
Model Explanation:1–3
Nameplate Information:1–3
External Parts and Labels:1—4
GS2 AC Drive Specifications

Manual Overview

Overview of this Publication

The GS2 AC Drive User Manual describes the installation, configuration, and methods of operation of the GS2 Series AC Drive.

Who Should Read This Manual

This manual contains important information for those who will install, maintain, and/or operate any of the GS2 Series AC Drives.

Supplemental Publications

The National Electrical Manufacturers Association (NEMA) publishes many different documents that discuss standards for industrial control equipment. Global Engineering Documents handles the sale of NEMA documents. For more information, you can contact Global Engineering Documents at:

15 Inverness Way East Englewood, CO 80112-5776 1-800-854-7179 (within the U.S.) 303-397-7956 (international) www.global.ihs.com

NEMA documents that might assist with your AC drive systems are:

- Application Guide for AC Adjustable Speed Drive Systems
- Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable Speed Drive Systems.

Technical Support

By Telephone: 770-844-4200

(Mon.-Fri., 9:00 a.m.-6:00 p.m. E.T.)

On the Web: www.automationdirect.com

Our technical support group is glad to work with you in answering your questions. If you cannot find the solution to your particular application, or, if for any reason you need additional technical assistance, please call technical support at **770-844-4200**. We are available weekdays from 9:00 a.m. to 6:00 p.m. Eastern Time.

We also encourage you to visit our web site where you can find technical and non-technical information about our products and our company. Visit us at **www.automationdirect.com**.

Special Symbols

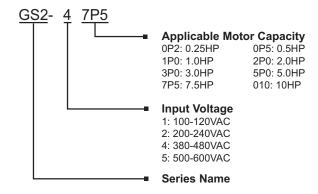
When you see the "notepad" icon in the left-hand margin, the paragraph to its immediate right will be a special note.

When you see the "exclamation mark" icon in the left-hand margin, the paragraph to its immediate right will be a WARNING. This information could prevent injury, loss of property, or even death (in extreme cases).

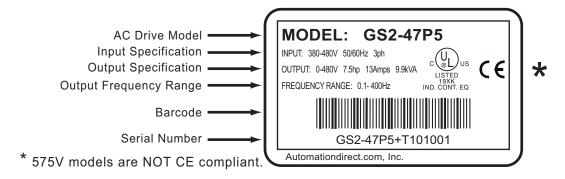
GS2 AC Drive Introduction

Purpose of AC Drives

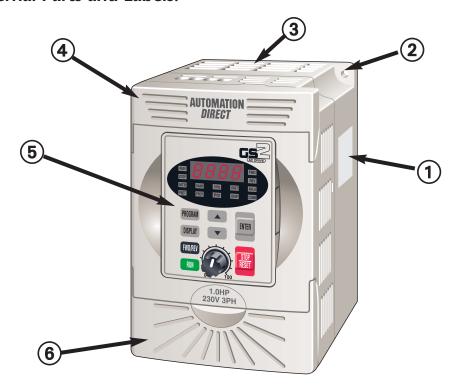
AC drives are generally known by many different names: Adjustable Frequency Drives (AFD), Variable Frequency Drives (VFD), and Inverters. Drives are used primarily to vary the speed of three phase AC induction motors, and they also provide non-emergency start and stop control, acceleration and deceleration, and overload protection. By gradually accelerating the motor, drives can reduce the amount of motor startup inrush current.

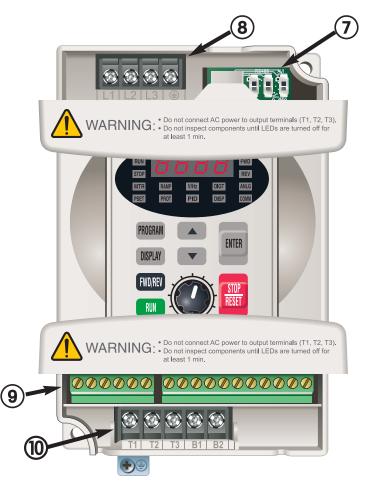

AC drives function by converting incoming AC power to DC, which is then synthesized back into three phase output power. The voltage and frequency of this synthesized output power is directly varied by the drive, where the frequency determines the speed of the three phase AC induction motor.

Drive Package Contents


After receiving the AC motor drive, please check for the following:

- Make sure that the package includes an AC drive, the GS2 Series AC Drive User Manual, and the GS2 Series AC Drive Quick Reference.
- Inspect the unit to insure it was not damaged during shipment.
- Make sure that the part number indicated on the nameplate corresponds with the part number of your order.


Model Explanation:


Nameplate Information:

External Parts and Labels:

- ① Nameplate Label
- ② Mounting Screw Holes
- ③ Ventilation Slots
- 4 Upper Cover
- ⑤ Digital Keypad
- **6** Lower Cover
- 7) DIP Switches
- **®** Input Power Terminals
- Ontrol Input/Output Terminals
- **(10)** Output Power Terminals

GS2 AC Drive Specifications

115V Class							
Model Name: GS2-xxx			10P2	10P5	11P0		
	Mariner Mater Outerst		0.25	0.5	1.0		
0 1 . 1	Maximum Motor Output	kW	0.2	0.4	0.75		
Output Rating	Rated Output Current (A)	1.6	2.5	4.2		
i i i i i i i i i i i i i i i i i i i	Maximum Output Voltag	je	Three-phase 200 to 240V (x2 of input voltage)				
	Rated Output Frequency		0.1 to 400 Hz				
	Rated Voltage/Frequency	/	Single-phase, 100 to 120 VAC, 50/60Hz				
Input	Rated Input Current (A)		6	9	16		
Rating	Voltage/Frequency Tolera	nce	Voltage: +/- 10%; Frequency: +/- 5%				
	Short Circuit Withstand (A, rms symmetrical)		5kA @ 120 VAC				
Watt Lo	ss @ 100% I (W)		24	34	46		
Weight	(lbs.)		3.5	3.5 3.6			

	230V Class								
Model Name: GS2-xxx			20P5	21P0	22P0	23P0	25P0	27P5	
	Maximum Motor Output	HP	0.5	1.0	2.0	3.0	5.0	7.5	
	Maximum Motor Output	kW	0.4	0.75	1.5	2.2	3.7	5.5	
Output Rating	Rated Output Current (A	7)	2.5	5.0	7.0	10	17	25	
9	Maximum Output Voltag	je	Three	e-phase 2	00 to 240)V (propo	ortional to	input voltage)	
	Rated Output Frequency	0.1 to 400 Hz							
	Rated Voltage/Frequency		200/208/220/230/240 VAC, 200/208/220/23					nree-phase, 08/220/230/240 C, 50/60 Hz	
Input Rating	Rated Input Current (A)		6.3/3.2	11.5/6.3	15.7/9.0	27/12.5	19.6	28	
Ikating	Voltage/Frequency Tolera	Voltage: +/- 10%; Frequency: +/- 5%							
	Short Circuit Withstand (A, rms symmetrical)		5kA @ 240 VAC						
Watt Lo	ss @ 100% I (W)		34	57	77	111	185	255	
Weight	(lbs.)		3.5	3.6	3.7	8.5	8.5	8.5	

GS2 AC Drive Specifications (continued)

	460V Class							
Model Name: GS2-xxx			41P0	42P0	43P0	45P0	47P5	4010
	Maximum Motor Output	łP	1.0	2.0	3.0	5.0	7.5	10
0	' K	W	0.8	1.5	2.2	4.0	5.5	7.5
Output Rating	Rated Output Current (A)		3.0	4.0	5.0	8.2	13	18
	Maximum Output Voltage		Three-phase 380 to 480V (proportional to input voltage)					
	Rated Output Frequency 0.1 to 400 Hz							
	Rated Voltage/Frequency		Three-phase 380/400/415/440/460/480 VAC 50/60Hz					
Input	Rated Input Current (A)		4.2	5.7	6.0	8.5	14	23
Rating	Voltage/Frequency Tolerand	:e	Voltage: +/- 10%; Frequency: +/- 5%					
	Short Circuit Withstand (A, rms symmetrical)		5kA @ 480 VAC					
Watt Loss @ 100% I (W)			73	86	102	170	240	255
Weight	(lbs.)		3.5	3.6	3.7	8.5	8.5	8.5

575V Class									
Model Name: GS2-xxx			51P0	52P0	53P0	55P0	57P5	5010	
	Maximum Motor Output	ΗP	1.0	2.0	3.0	5.0	7.5	10	
	·	٠W	0.75	1.5	2.2	3.7	5.5	7.5	
Raung	Rated Output Current (A)		1.7	3.0	4.2	6.6	9.9	12.2	
	Maximum Output Voltage	Voltage Three-phase 500 to 600V (proportional to					l to input v	input voltage)	
	Rated Output Frequency		0.1 to 400 Hz						
	Rated Voltage/Frequency		Three-phase 500 to 600V						
Input	Rated Input Current (A)		2.4	4.2	5.9	7.0	10.5	12.9	
Rating	Voltage/Frequency Tolerand	ce	e Voltage: -15 to +10%; Frequency: +/- 5%						
	Short Circuit Withstand (A, rms symmetrical)		5kA @ 600 VAC						
Watt Lo	oss @ 100% I (W)		30	58	83	132	191	211	
Weight	(lbs.)		3.3	3.3	4.4	7.0	7.0	7.3	

			General Specifications				
Control	Characteris		Jeneral Specifications				
Control S			Pulse Width Modulation, Carrier frequency 1-12 kHz				
	ıtput Frequ	Iency	1.0 to 400.0 Hz				
	requency l		0.1 Hz				
	Capacity	ACSOIGEIOII	150% of rated current for 1 minute				
	haracterist	tics	Includes auto-torque boost, auto-slip compensation, starting torque 125% @ 0.5 Hz / 150% @ 5.0 Hz				
Braking ⁻	Torque		20% without dynamic braking, 125% with optional braking resistor - braking transistor built-in				
DC Braki	ng		Operation frequency 60-0 Hz, 0 - 100% rated current, Start time 0.0 - 5.0 seconds, Stop time 0.0 - 25.0 seconds				
Accelerat	tion/Decel	eration Time	0.1 to 600 seconds (linear or non-linear acceleration/deceleration), second acceleration/deceleration available				
	Frequency		Settings available for Constant Torque - low & high starting torque, Variable Torque - low & high starting torque, and user configured				
Stall Prev	ention Lev	/el	20 to 200% or rated current				
Operatio	n Specifica	ition					
	Frequency Setting	Keypad	Setting by <up> or <down> buttons or potentiometer</down></up>				
		External Signal	Potentiometer - 3-5 k Ω , 0 to 10 VDC (input impedance 10 k Ω), 0 to 20 mA / 4 to 20 mA (input impedance 250 Ω). Multi-Speed Inputs 1 to 3, RS-232C/RS-485 communication interface				
	Operation Setting Input Terminals	Keypad	Setting by <run>, <fwd rev="">, <stop reset=""> buttons</stop></fwd></run>				
		External Signal	Forward/Stop, Reverse/Stop (run/stop, fwd/rev), 3-wire control, Serial Communication RS-232C & RS-485 (Modbus RTU)				
Inputs		Digital	6 user-programmable: FWD/STOP, REV/STOP, RUN/STOP, REV/FWD, RUN momentary (N.O.), STOP momentary (N.C.), External Fault (N.O./N.C.), External Reset, Multi-Speed Bit (1-3), Jog, External Base Block (N.O./N.C.), Second Accel/Decel Time, Speed Hold, Increase Speed, Decrease Speed, Reset Speed to Zero, PID Disable (N.O.), PID Disable (N.C.), Input Disable				
		Analog	1 user-configurable, 0 to 10 VDC (input impedance 10 k Ω), 0 to 20 mA / 4 to 20 mA (input impedance 250 Ω), 10 bit resolution				
	Output Terminals	Digital	2 user-programmable: Inverter Running, Inverter Fault, At Speed, Zero Speed, Above Desired Frequency, Below Desired Frequency, At Maximum Speed, Over Torque Detected, Above Desired Current, Below Desired Current, PID Deviation Alarm				
Outputs		Analog	1 user-programmable, 0 to 10 VDC (max load 2mA), 8 bit resolution frequency, current, process variable PV				
Outputs	Operating Functions		Automatic voltage regulation, voltage/frequency characteristics selection, non-linear acceleration/deceleration, upper and lower frequency limiters, 7-stage speed operation, adjustable carrier frequency (1 to 12 kHz), PID control, skip frequencies, analog gain & bias adjustment, jog, electronic thermal relay, automatic torque boost, trip history, software protection				

	General Specifications (continued)					
Protective Functions		Electronic Thermal, Overload Relay, Auto Restart after Fault, Momentary Power Loss, Reverse Operation Inhibit, Auto Voltage Regulation, Over-Voltage Trip Prevention, Auto Adjustable Accel/Decel, Over-Torque Detection Mode, Over-Torque Detection Level, Over-Torque Detection Time, Over-Current Stall Prevention during Acceleration, Over-Current Stall Prevention during Operation				
	Operator Devices	8-key, 4-digit, 7-segment LED, 14 status LEDs, potentiometer				
Operator Interface	Programming	Parameter values for setup and review, fault codes				
	Status Display	Actual Operating Frequency, RPM, Scaled Frequency, Amps, % Load, Output Voltage, DC Bus Voltage, Process Variable, Set-point Frequency				
	Key Functions	RUN, STOP/RESET, FWD/REV, PROGRAM, DISPLAY, <up>, <down>, ENTER</down></up>				
	Enclosure Rating	Protected Chassis, IP20				
	Ambient Temperature	-10°C to 50°C (14°F to 122°F) -10°C to 40°C (14°F to 104°F) for models 7.5 hp (5.5 kW) and higher				
Environment	Storage Temperature	-20°C to 60°C (-4°F to 140°F) – during short term transportation period				
Environment	Ambient Humidity	20 to 90% RH (non-condensing)				
	Vibration	9.8 m/s^2 (1G) less than 10 Hz, 5.9 m/s^2 (0.6G) 10 to 60 Hz				
	Installation Location	Altitude 1000m or lower above sea level, keep from corrosive gas, liquid and dust				
Options		Noise filter, input AC reactor, output AC reactor, cable for remote operator, programming software, Dynamic braking resistor, input fuses				
Agency Approvals		UL & cUL listed; CE* *CE certification applies only to 115V, 230V, 460V class drives.				

CHAPTER 2

Installation and Wiring

In This Chapter...

Ambient Conditions	-2
Installation	-3
Minimum Clearances and AirFlow	-3
Dimensions2-	-4
GS2 Circuit Connections2-	-6
Danger	-6
Main Circuit Wiring	-8
Control Terminal Wiring2–1	10
Basic Wiring Diagram2–1	11
External Accessories2–1	2

Ambient Conditions

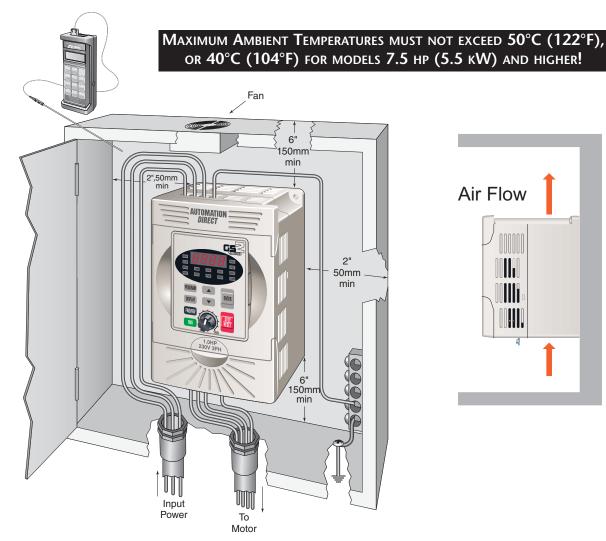
The AC drive should be kept in the shipping carton before installation. In order to retain the warranty coverage, the AC drive should be stored properly when it is not to be used for an extended period of time. Some storage suggestions are:

- Store in a clean and dry location free from direct sunlight or corrosive fumes.
- Store within an ambient temperature range of -20°C to +60°C.
- Store within a relative humidity range of 0% to 90% and non-condensing environment.
- Store within an air pressure range of 86 kPA to 106 kPA.

Ambient Conditions		
Ambient Temperature	-10°C to 50°C (14°F to 122°F) for models below 7.5 hp (5.5 kW), -10°C to 40°C (14°F to 104°F) for models 7.5 hp (5.5 kW) and higher	
Storage Temperature	-20° to 60°C (-4°F to 140°F)	
Relative Humidity	0 to 90% (non-condensing)	
Atmosphere Pressure	86 kPA to 106 kPA	
Vibration	9.8 m/s² (1G) less than 10 Hz, 5.9 m/s² (0.6G) 10 to 60 Hz	
Installation Location	Altitude 1000m or lower above sea level, keep from corrosive gas, liquid and dust	
Enclosure Rating	IP20: Protection against contact by fingers. Protection against medium-size foreign objects	

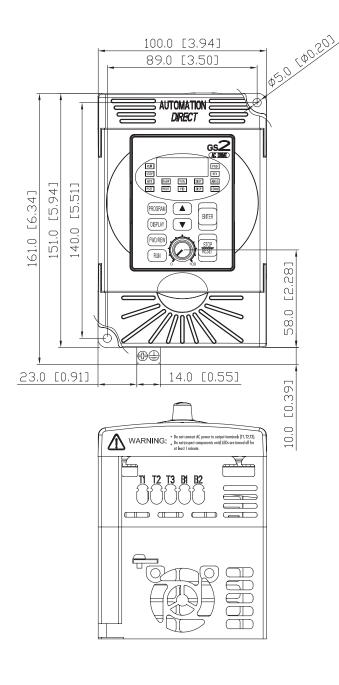
Installation

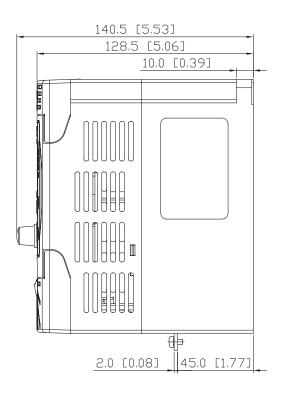
Improper installation of the AC drive will greatly reduce its life. Be sure to observe the following precautions when selecting a mounting location:


WARNING: Failure to observe these precautions may damage the drive and void the warranty!

- Do not mount the AC drive near heat-radiating elements or in direct sunlight.
- Do not install the AC drive in a place subjected to high temperature, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
- Mount the AC drive securely on a flat, rigid, non-flammable surface.
- Mount the AC drive vertically and do not restrict the air flow to the heat sink fins.

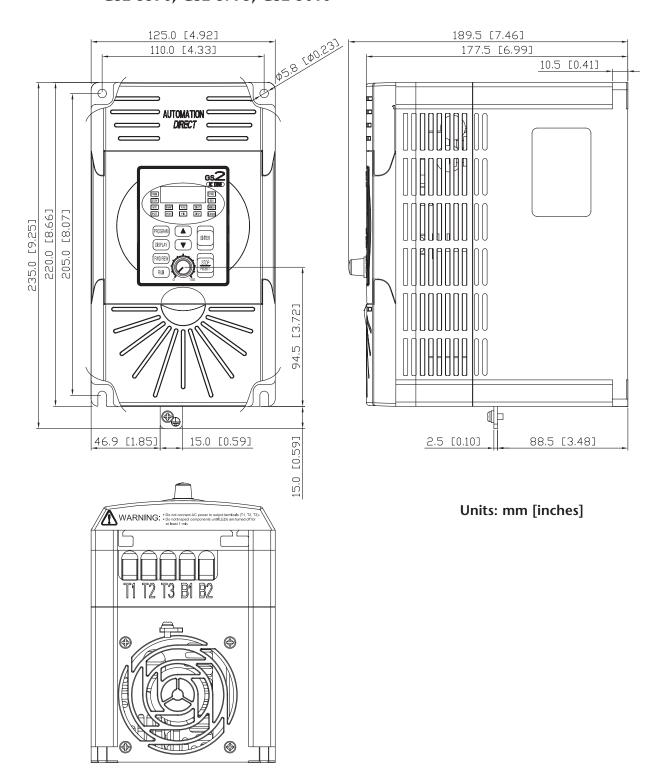
WARNING: AC drives generate a large amount of heat which may damage them. Auxiliary cooling methods are typically required in order not to exceed maximum ambient temperatures.


Minimum Clearances and Air Flow



Dimensions

```
GS2-10P2, GS2-10P5, GS2-11P0, GS2-20P5, GS2-21P0, GS2-22P0, GS2-41P0, GS2-42P0, GS2-43P0, GS2-51P0, GS2-52P0, GS2-53P0
```



Units: mm [inches]

Dimensions (continued)

GS2-23P0, GS2-25P0, GS2-27P5, GS2-45P0, GS2-47P5, GS2-4010, GS2-55P0, GS2-57P5, GS2-5010

GS2 Circuit Connections

DANGER!

HAZARDOUS VOLTAGE! Before making any connection to the AC drive, disconnect all power to the AC drive, and wait five minutes for DC bus capacitors to discharge.

Warning: Any electrical or mechanical modification to this equipment without prior written consent of AutomationDirect.com, Inc. will void all warranties, may result in a safety hazard, and may void the UL listing.

WARNING: Do not connect the AC input power to the T1, T2, and T3 output terminals. This will damage the AC drive

WARNING: Tighten all screws to the proper torque rating. See "Main Circuit Wiring" later in this chapter.

Wiring Notes: PLEASE READ PRIOR TO INSTALLATION.

- 1. During installation, follow all local electrical, construction, and safety codes for the country in which the AC drive is to be installed.
- 2. Make sure the appropriate circuit protective devices (circuit breaker or fuses) are connected between the power supply and AC drive.
- 3. Make sure that the leads are connected correctly and the AC drive is properly grounded. (Ground resistance should not exceed 0.1Ω .)
- 4. Use ground leads that comply with AWG/MCM standards and keep them as short as possible.
- 5. Do not use a power circuit contactor or disconnect switch for run/stop control of the AC drive and motor. This will reduce the operating life cycle of the AC drive. Cycling a power circuit switching device while the AC drive is in run mode should be done only in emergency situations.
- 6. Multiple GS2 units can be installed in one location. All of the units should be grounded directly to a common ground terminal, or connected in parallel, as shown in the figure below. **Make sure there are no ground loops.**

Forward running (CCW)

- 7. When the AC drive output terminals T1, T2, and T3 are connected to the motor terminals T1, T2, and T3, respectively, the motor will rotate counterclockwise (as viewed from the shaft end of the motor) when a forward operation command is received. To reverse the direction of motor rotation, switch the connections of any of the two motor leads.
- 8. Make sure that the power source is capable of supplying the correct voltage and required current to the AC drive.

- 9. Do not attach or remove wiring when power is applied to the AC drive.
- 10. Do not inspect components unless inside "POWER" lamp is turned off.
- 11. Do not monitor the signals on the circuit board while the AC drive is in operation.
- 12. For the 115V single-phase rated AC drives, AC power must be connected to input terminals L1 and L2. For the 230V single-phase rated AC drives, AC power can be connected to any two of the three input terminals L1, L2, and L3. **Note: This AC drive is not intended for use with single-phase motors.**
- 13. Route the power and control wires separately, or at 90 degree angle to each other.
- 14. If a filter is required for reducing EMI (Electro-Magnetic Interference), install it as close as possible to the AC drive. EMI can also be reduced by lowering the Carrier Frequency.
- 15. If the AC drive is installed in a place where a load reactor is needed, install the filter close to the T1, T2, and T3 side of AC drive. Do not use a Capacitor, L-C Filter (Inductance-Capacitance), or R-C Filter (Resistance-Capacitance), unless approved by AutomationDirect.
- 16. When using a GFCI (Ground Fault Circuit Interrupt), select current sensor with sensitivity of 200 mA, and not less than 0.1-second detection to avoid nuisance tripping.

Motor Operation Precautions

- 1. If the AC drive is used to operate a standard 3-phase induction motor, the energy loss is greater than if using an inverter duty motor.
- 2. Avoid running a standard induction motor at low speed, which may cause the motor temperature to exceed the motor rating due to limited airflow produced by the motor's fan.
- 3. When the standard motor operates at low speed, the output load must be decreased.
- 4. If 100% output torque is desired at low speed, it may be necessary to use a special "inverter-duty" rated motor.

Short Circuit Withstand Current

Suitable for use on a circuit capable of delivering not more than 5,000 rms symmetrical Amperes. The maximum voltage is 120, 240, 480, and 600V for all 115, 230, 460, and 575V models, respectively. (An optional line reactor can be installed in the incoming power circuit to reduce the available short circuit current.)

Applicable Codes

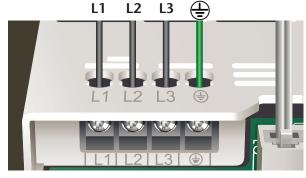
1st Ed. Rev. C 12/2006

All GS2 Series AC drives are Underwriters Laboratories, Inc. (UL) and Canadian Underwriters Laboratories (cUL) listed, and therefore comply with the requirements of the National Electrical Code (NEC) and the Canadian Electrical Code (CEC).

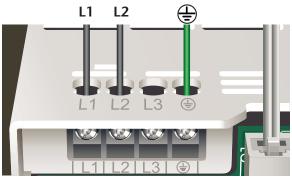
Installation intended to meet the UL and cUL requirements must follow the instructions provided in "Wiring Notes" as a minimum standard. Follow all local codes that exceed UL and cUL requirements. Refer to the technical data label affixed to the AC drive and the motor nameplate for electrical data.

The "Fuses and Fuse Kits" section in APPENDIX A, lists the recommended fuse part number for each GS2 Series part number. These fuses (or equivalent) must be used on all installations where compliance with U.L. standards is required.

Main Circuit Wiring


Main Circuit Terminals		
Terminal	Description	
L1, L2, L3	Input Power	
T1, T2, T3	AC Drive Output	
B1, B2	Dynamic Braking Resistor (optional)	
÷	Ground	

Output Power Connections

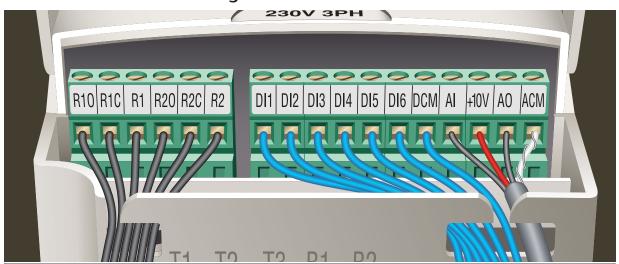


3-phase Input Power Connections

3-phase Input Power		
	200-240V ± 10%; 50/60 Hz ± 5%	
460V Class	380-480V ± 10%; 50/60 Hz ± 5%	
575V Class	500-600V -15/+10%; 50/60 Hz ± 5%	

1-phase Input Power Connections*

1-phase* Input Power		
	100-120V ± 10%; 50/60Hz ± 5%	
230V Class	200-240V ± 10%; 50/60Hz ± 5%	
* Only models GS2-10P2, GS2-10P5,		


* Only models GS2-10P2, GS2-10P5, GS2-11P0, GS2-20P5, GS2-21P0, GS2-22P0, and GS2-23P0 are rated for 1-phase input power

Main Circuit Wiring (continued)

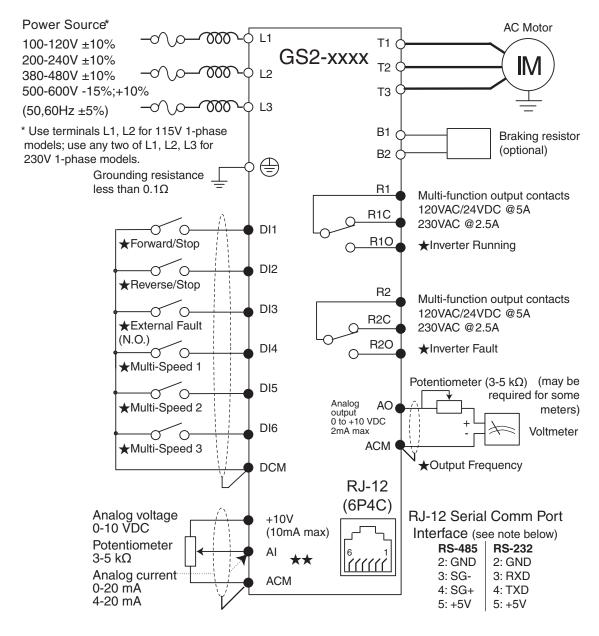
Main Circuit Wiring Specifications			
AC Drive Model	Current Input/Output (A)	Wire Gauge (AWG)	Terminal Screw Torque (in·lbf)
GS2-10P2 (1-phase)	6 / 1.6	12-14	
GS2-10P5 (1-phase)	9 / 2.5	12-14	
GS2-11P0 (1-phase)	16 / 4.2	12	
GS2-20P5 (1-phase)	6.3 / 2.5		
GS2-20P5 (3-phase)	3.2 / 2.5	12-14	12
GS2-21P0 (1-phase)	11.5 / 5.0		
GS2-21P0 (3-phase)	6.3 / 5.0		
GS2-22P0 (1-phase)	15.7 / 7.0	12	
GS2-22P0 (3-phase)	9 / 7.0	12-14	
GS2-23P0 (1-phase)	27 / 10	8	
GS2-23P0 (3-phase)	12.5 / 10	8-12	13
GS2-25P0	19.6 / 17	8-10	
GS2-27P5	28 / 25	8	
GS2-41P0	4.2 / 3.0		
GS2-42P0	5.7 / 4.0	12-14	12
GS2-43P0	6.0 / 5.0		
GS2-45P0	8.5 / 8.2	8-14	
GS2-47P5	14 / 13	8-12	13
GS2-4010	23 / 18	8-10	
GS2-51P0	2.4 / 1.7		
GS2-52P0	4.2 / 3.0	12-14	12
GS2-53P0	5.9 / 4.2		
GS2-55P0	7.0 / 6.6	8-14 8-12	
GS2-57P5	10.5 / 9.9		13
GS2-5010	12.9 / 12.2		
NOTE: Use 75°C (or higher) copper wir	e only.		

2_9

Control Terminal Wiring

Control Circuit Terminals				
Terminal Symbol	Description	Remarks		
R10	Relay Output 1 Normally Open			
R1C	Relay Output 1 Normally Closed			
R1	Relay Output 1 Common	120 VAC / 24 VDC @ 5A		
R2O	Relay Output 2 Normally Open	230 VAC @ 2.5A		
R2C	Relay Output 2 Normally Closed			
R2	Relay Output 2 Common			
DI1	Digital Input 1			
DI2	Digital Input 2	least National Internalis Complications (Managed Internalis		
DI3	Digital Input 3	Input Voltage: Internally Supplied (see WARNING below) Input Voltage Range: 4-12V		
DI4	Digital Input 4	Minimum ON Current: 22 mA max		
DI5	Digital Input 5	Maximum OFF Current: 1.1 mA also see "Basic Wiring Diagram" on next page.		
DI6	Digital Input 6	auso see Basic Willing Blagfalli Off flext page.		
DCM	Digital Common			
AI	Analog Input	0 to +10 V Input 0 to 20 mA Input, or 4 to 20 mA Input		
+10V	Internal Power Supply	+10 VDC (10 mA maximum load)		
AO	Analog Output	0 to +10V Output (2mA maximum load)		
ACM	Analog Common			

Warning: Do NOT connect external voltage sources to the Digital Inputs. Permanent damage may result.



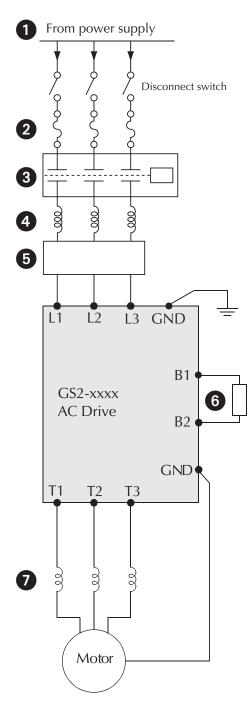
Note: Use twisted-shielded, twisted-pair, or shielded-lead wires for the control signal wiring. It is recommended to run all signal wiring in a separate steel conduit. The shield wire should be connected only at the AC drive. Do not connect shield wire on both ends.

Basic Wiring Diagram

Note: Users must connect wiring according to the circuit diagram shown below.

- **★**Factory default setting
- ★★Factory default source of frequency command is via the keypad potentiometer
- O Main circuit (power) terminals

 Control circuit terminal


 Shielded leads

WARNING: Do not plug a modem or telephone into the GS2 RJ-12 Serial Comm Port, or permanent damage may result. Terminals 2 and 5 should not be used as a power source for your communication connection.

External Accessories Power Supply

Refer to Appendix A for information regarding external accessories.

Please follow the specific power supply requirements

2 Fuses

Input fuses protect the AC drive from excessive input current due to line surges, short circuits, and ground faults. They are recommended for all installations and may be required for UL-listed installations.

3 Contactor (Optional)

shown in Chapter 1

Do not use a contactor or disconnect switch for run/stop control of the AC drive and motor. This will reduce the operating life cycle of the AC drive. Cycling a power circuit switching device while the AC drive is in run mode should be done only in emergency situations.

4 AC Line Reactor (Optional)

Input line reactors protect the AC drive from transient overvoltage conditions typically caused by utility capacitor switching. Input line reactors also reduce the harmonics associated with AC drives, and are recommended for all installations.

5 EMI filter (Optional)

Input EMI filters reduce electromagnetic interference or noise on the input side of the AC drive. They are required for CE compliance and recommended for installations prone to or sensitive to electromagnetic interference.

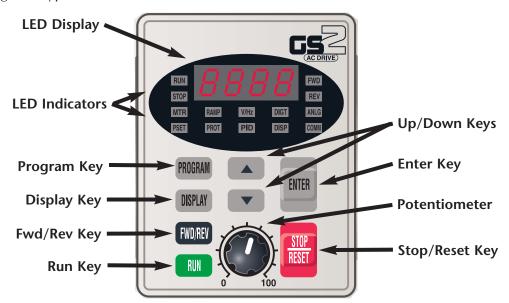
6 Braking Resistors (Optional)

Dynamic braking allows the AC drive to produce additional braking (stopping) torque. AC drives can typically produce between 15% & 20% braking torque without the addition of any external components. The addition of optional braking may be required for applications that require rapid deceleration or high inertia loads.

7 AC Line Reactor (Optional)

Output line (load) reactors protect the motor insulation against AC drive short circuits and IGBT reflective wave damage, and also allow the motor to run cooler by smoothing the motor current waveform. They are recommended for operating "non-inverter-duty" motors, and for any motors when the length of wiring between the AC drive and motor exceeds 75 feet.

Note: Please refer to Appendix A for specifications on GS2 AC Drive Accessories.



In This Chapter...

The GS2 Digital Keypad
LED Display
LED Indicators
Function Keys3–3
Displaying the Status of the GS2 AC Drive3-4
Programming the GS2 AC Drive3–5
GS2 Quickstart
Example 1: Constant torque (e.g. conveyors, compressors, etc.) .3-6
Example 2: Variable torque (e.g. fans, centrifugal pumps, etc.) .3-11

The GS2 Digital Keypad

The digital keypad includes a 4-digit LED display, 14 LED Indicators, 8 function keys, and a potentiometer. The diagram below shows all of the features of the digital keypad and an overview of their functions.

LED Display

The LED display shows the AC drive operation values and parameter settings.

LED Indicators

- The RUN LED indicates the AC drive is in Run Mode. The RUN LED blinks when the drive is decelerating to stop.
- The STOP LED indicates the AC drive is not in Run Mode. The STOP LED blinks when the drive is in Run Mode, but has zero speed reference.
- The FWD LED indicates the AC drive is running the motor in the forward direction.
- **REV** The REV LED indicates the AC drive is running the motor in the reverse direction.
- The MTR LED indicates the AC drive is in Program Mode and is displaying the Motor Parameters group (P 0.xx).
- The RAMP LED indicates the AC drive is in Program Mode and is displaying the Ramp Parameters group (P 1.xx).
- The V/Hz LED indicates the AC drive is in Program Mode and displays the Volts/Hertz Parameters group (P 2.xx).
- The DIGT LED indicates the AC drive is in Program Mode and displays the Digital Parameters group (P 3.xx).
- The ANLG LED indicates the AC drive is in Program Mode and displays the Analog Parameters group (P 4.xx).

The PSET LED indicates the AC drive is in Program Mode and displays the Preset Parameters group (P 5.xx).

The PROT LED indicates the AC drive is in Program Mode and displays the Protection Parameters group (P 6.xx).

The PID LED indicates the AC drive is in Program Mode and displays the PID Parameters group (P 7.xx).

The DISP LED indicates the AC drive is in Program Mode and displays the Display Parameters group (P 8.xx).

The COMM LED indicates the AC drive is in Program Mode and displays the Communication Parameters group (P 9.xx).

Function Keys

Pressing the **PROGRAM** key repetitively cycles through the parameter groups. As you cycle through the parameter groups, an LED indicator lights to show you which parameter group is selected.

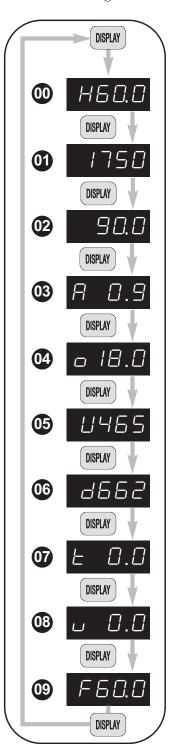
Pressing the **DISPLAY** key cycles through the operational values of the AC drive when the AC drive is not in Program Mode. When in Program Mode, the Display key will display the value of the selected parameter.

Pressing the FWD/REV key changes the direction in which the motor operates.

Pressing the **RUN** key starts the AC drive operation. This key has no function if the AC drive is controlled by the external control terminals.

Press the **UP/DOWN** arrow keys momentarily to change parameter settings. These keys may also be used to scroll through different operating values or parameters. Pressing the "Up" or "Down" key momentarily, changes the parameter settings in single-unit increments. To quickly run through the range of settings, press and hold the "Up" or "Down" key.

Press the **ENTER** key to view parameters and store parameter settings.


The **STOP/RESET** key is used to stop AC drive operation. If the AC drive has stopped due to a fault, clear the fault first, then press this key to reset the AC drive.

The **POTENTIOMETER** is for setting operation frequency.

Displaying the Status of the GS2 AC Drive

Press the display button on the keypad repeatedly to cycle through the status messages on the AC drive. The diagram below shows the order of the status messages as you cycle through them, and shows the definitions of the status messages. The status of the AC drive can be shown in RUN or STOP mode.

100 Actual Operating Frequency

Displays the actual operating frequency present at the T1, T2, and T3 terminals. *Example:* 60.0Hz

OI RPM

Displays the present *estimated* speed of the motor. *Example: 1750 rpm*

O2 Scaled Frequency

Displays the result of output frequency x P 8.01. Example: $60Hz \times 1.5 = 90.0$

03 Amps

Displays the output current present at the T1, T2, and T3 terminals. *Example: 0.9A*

04 % Load

Displays the amount of load on the AC drive. Example: (Output Current ÷ Drive Rated Current) x 100

05 Output Voltage

Displays the output voltage present at the T1, T2, and T3 terminals. *Example:* 465V

06 DC Bus Voltage

Displays the DC Bus Voltage. Example: 662 VDC

O7 PID Setpoint

Displays the PID setpoint. Note: It is possible to change the PID setpoint with the \triangle and ∇ keys when the PID setpoint value is displayed on the keypad. The PID function (P 7.00) must be enabled, and the PID Setpoint source (P 7.02) must be set to keypad (00).

08 PID Feedback Signal (PV)

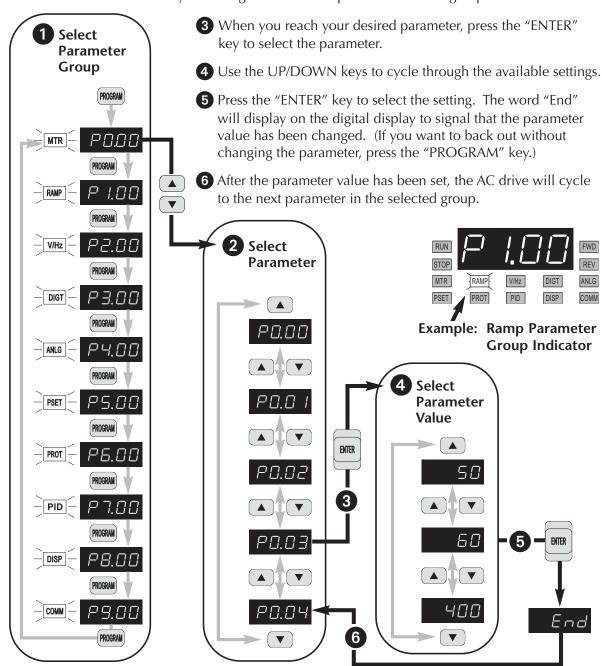
Displays the PID feed-back signal.

NOTE:

D The PID LED will flash when the

PID Setpoint or **Process Variable** is displayed.

109 Setpoint Frequency


Displays the frequency setting of the AC drive.

Example: 60.0 Hz

Programming the GS2 AC Drive

The GS2 AC Drive parameters are organized into 10 different groups according to their functions. The illustration below shows you how to navigate through the parameter groups and parameter settings. For a complete list of parameters, refer to CHAPTER 4.

- 1 Press the "Program" key repetitively to cycle through the parameter groups. As you cycle through the parameter groups, an LED indicator will light to show you which parameter group is selected.
- 2 Once you reach the desired parameter group, use the UP/DOWN keys to cycle through the available parameters in that group.

GS2 Quickstart

The following examples will help you quickly set up your GS2 AC Drive for two common applications. The first example applies to an application that requires constant torque, and the second example requires variable torque.

Note: For a complete list and description of the parameters for the GS2 Series AC drives, refer to Chapter 4.

Example 1: Constant torque (e.g. conveyors, compressors, etc.)

In this example, the AC drive needs to operate a motor that is connected to a conveyor. In order to decide which parameters need modifications, we will make a list of the needs for the application.

Application Needs

• The AC drive must control a 460V, 1hp inverter duty motor. We will use a model GS2-41P0 drive for this application. An example of the motor nameplate is shown below.

- •The maximum speed for the motor is 2000 rpm.
- The motor should accelerate to maximum speed in 5 seconds.
- The motor should decelerate from maximum speed in 5 seconds.
- The motor will require a high torque when starting.
- The operation of the motor (start, stop, etc.) will be controlled by remote control terminals. All keys on the GS2 keypad should be disabled.
- The frequency of the AC drive will be determined by remote potentiometer that has a 0 to +10V signal.
- The display of the AC drive should default to the motor speed (rpm) when running.

Parameter Setup

In order to meet the needs of this application, the drive parameters should be set as follows:

P 0.00 Motor Nameplate Voltage

Setting: 460

Range: 115V&230V class: 200/208/220/230/240 Default Setting: 240 460V class: 380/400/415/440/460/480 480 575V class: 380 to 637 575

This parameter setting is determined by the motor nameplate.

P 0.01 Motor Nameplate Amps

Setting: 2.6

Range: Drive Rated Amps x .3 to Default Setting: Drive Rating (A)
Drive Rated Amps x 1.0

This parameter setting is determined by the motor nameplate..

P 0.02 Motor Base Frequency

Setting: 60

Range: 50/60/400 Default Setting 60 This parameter setting is determined by the motor nameplate.

P 0.03 Motor Base RPM

Setting: 1725

Range: 375 to 9999 rpm Default Setting: 1750

This parameter setting is determined by the motor nameplate.

P 0.04 Motor Maximum RPM

Setting: 2000

Range: P 0.03 to 9999 rpm Default Setting: P 0.03 This parameter setting is determined by the needs of the application.

WARNING: The Motor Maximum RPM parameter (P 0.04) should never exceed the maximum rpm rating for the motor you are using. If this information is not readily available, consult your motor manufacturer.

P 1.00 Stop Methods

Setting: 00

Range: 00 Ramp to Stop 01 Coast to stop Default Setting: 00

The Ramp to Stop setting causes the drive to stop the motor under power according to the Deceleration Time set in P 1.02. If the AC drive was set for Coast to Stop, the AC drive would ignore the Deceleration Time setting.

WARNING: If the Stop Method for the GS2 AC drive is set for Coast to Stop, the AC drive will ignore any setting you have for Deceleration Time (P 1.02).

P 1.01 Acceleration Time

Setting: 5.0

Range: 0.1 to 600 sec Default Setting: 10 sec

The motor should accelerate from 0 rpm to base rpm (P 0.03) in 5 seconds.

P 1.02 Deceleration Time

Setting: 5.0

Range: 0.1 to 600 sec Default Setting: 30 sec

The motor should decelerate from 2000 rpm (maximum speed) to 0 rpm in 5 seconds.

P 2.00 Volts/Hertz Settings

Setting: 01

Default Setting: 0.0

Settings: 00 - General Purpose

01 - High Starting Torque

02 - Fans and Pumps

03 - Custom

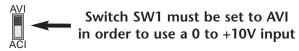
The GS2 Series AC drive has some predefined torque settings that meet the needs of most applications. A custom setting is available if needed. In this example, the application requires a high starting torque.

P 3.00 Source of Operation Command Setting: 02

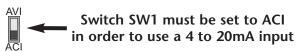
Default Setting: 00

Settings 00 Operation Determined by Digital Keypad

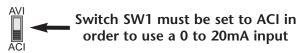
- Operation determined by external control terminals. Keypad STOP is enabled.
- Operation determined by external control terminals. Keypad STOP is disabled.
- Operation determined by RS-232/RS-485 interface. Keypad STOP is enabled.
- Operation determined by RS-232/RS-485 interface. Keypad STOP is disabled.


The AC drive operation will be determined by external control terminals and the keypad stop will be disabled.

P 4.00 Source of Frequency Command Setting: 02


Default: 00

Settings: 00 Frequency determined by keypad potentiometer


- 01 Frequency determined by digital keypad up/down
- Frequency determined by 0 to +10V input on AI terminal. Switch, SW1 must be set to AVI.

Frequency determined by 4 to 20mA input on Al terminal. Switch SW1 must be set to ACI.

O4 Frequency determined by 0 to 20mA input on Al terminal. Switch SW1 must be set to ACI.

05 Frequency determined by RS-232/RS-485 communication interface (RS-232 or RS-485 communication selected by switches SW2 and SW3. Refer to CHAPTER 5 for details.)

The frequency of the AC drive will be determined by an external potentiometer with a 0 to +10V signal.

P 6.00 Electronic Thermal Overload Relay Setting: 00

Default Setting: 00

Settings: 00 - Constant Torque (inverter/vector duty motor)

01 - Variable Torque (fan-cooled standard motor)

02 - Inactive

This function setting 00 is the standard overload protection curve used to protect inverter/vector duty motors.

P 8.00 User Defined Display Function Setting: 01

Default Setting: 00

Settings: 00 Output Frequency (Hz)

01 Motor Speed (rpm)

02 Output Frequency x P 8.01

03 Output Current (A)

04 Motor Output Current (%)

05 Output Voltage(V)

06 DC Bus Voltage (V)

07 PID Setpoint

08 PID Feedback (PV)

09 Frequency Setpoint

The AC drive display will default to motor speed (rpm) when running.

Example 2: Variable torque (e.g. fans, centrifugal pumps, etc.)

In this example, the AC drive needs to operate a motor that is connected to a centrifugal pump. As in Example 1, we will make a list of the needs for the application in order to decide which parameters need modifications.

Application Needs

• The AC drive must control a 208V, 3hp fan-cooled standard duty motor. The AC drive model we will be using for this application is a GS2-23P0. An example of the motor nameplate is shown below.

	Standard Duty Motor							
HP	3	Volts	208	PHASE	3	TYPE	Р	
RPM	3525	AMPS	9.2	HZ	60	SF	1.15	
DESIGN	В		AMB	40°C		INSUL C	LASS	F
DUTY	CONT		ENCL	TEFC		CODE	K	

- The maximum speed for the motor is 3600 rpm.
- The motor should accelerate to maximum speed in 20 seconds.
- The motor should coast to stop when operation is terminated.
- The motor will be turning a centrifugal pump.
- The operation of the motor (start, stop, etc.) will be controlled by the GS2 digital keypad.
- The frequency of the AC drive will be determined by the GS2 keypad potentiometer.
- The display of the AC drive should default to output current (A) when running.

Parameter Setup

In order to meet the needs of this application, the parameters should be set as

follows:

P 0.00 Motor Nameplate Voltage Setting: 208

Range: 115V&230V class: 200/208/220/230/240 Default Setting: 240 460V class: 380/400/415/440/460/480 480 575V class: 380 to 637 575

This parameter setting is determined by the motor nameplate.

P 0.01 **Motor Nameplate Amps** Setting: 9.2

Default Setting: Drive Rating (A) Range: Drive Rated Amps x .3 to Drive Rated Amps x 1.0

This parameter setting is determined by the motor nameplate.

P 0.02 Motor Base Frequency

Setting: 60

Range: 50/60/400 Default Setting 60

This parameter setting is determined by the motor nameplate.

P 0.03 Motor Base RPM

Setting: 3525

Range: 375 to 9999 rpm Default Setting: 1750

This parameter setting is determined by the motor nameplate.

P 0.04 Motor Maximum RPM

Setting: 3600

Range: P 0.03 to 9999 rpm Default Setting: P 0.03

This parameter setting is determined by the needs of the application.

WARNING: The Motor Maximum RPM parameter (P 0.04) should never exceed the maximum rpm rating for the motor you are using. If this information is not readily available, consult your motor manufacturer.

P 1.00 Stop Methods

Setting: 01

Range: 00 Ramp to Stop Default Setting: 00 01 Coast to stop

The application requires that this parameter be set to Coast to Stop.

WARNING: If the Stop Method for the GS2 AC drive is set for Coast to Stop, the AC drive will ignore any setting you have for Deceleration Time (P 1.02).

P 1.01 Acceleration Time

Setting: 20.0

Range: 0.1 to 600 sec Default Setting: 10 sec

The motor should accelerate from 0 rpm to Base rpm (P 0.03) in 20 seconds.

P 2.00 Volts/Hertz Settings

Setting: 02

Range: 00 - General Purpose Default Setting: 0.0

01 - High Starting Torque

02 - Fans and Pumps

03 - Custom

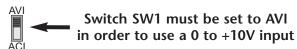
The GS2 Series AC drive has predefined torque settings that meet the needs of most applications. A custom setting is also available, if needed. In this example, the motor will be running a centrifugal pump.

P 3.00 Source of Operation Command Setting: 00

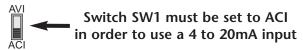
Default Setting: 00

Settings 00 Operation Determined by Digital Keypad

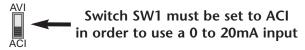
- Operation determined by external control terminals. Keypad STOP is enabled.
- Operation determined by external control terminals. Keypad STOP is disabled.
- Operation determined by RS-232/RS-485 interface. Keypad STOP is enabled.
- Operation determined by RS-232/RS-485 interface. Keypad STOP is disabled.


The AC drive operation will be determined by the Digital Keypad.

P 4.00 Source of Frequency Command Setting: 00


Default: 00

Settings: 00 Frequency determined by keypad potentiometer


- 01 Frequency determined by digital keypad up/down
- 02 Frequency determined by 0 to +10V input on Al terminal. Switch, SW1 must be set to AVI.

Frequency determined by 4 to 20mA input on Al terminal. Switch SW1 must be set to ACI.

Frequency determined by 0 to 20mA input on Al terminal. Switch SW1 must be set to ACI.

05 Frequency determined by RS-232/RS-485 communication interface (RS-232 or RS-485 communication selected by switches SW2 and SW3. Refer to CHAPTER 5 for details.)

The frequency of the AC drive will be determined by keypad potentiometer.

P 6.00 Electronic Thermal Overload Relay

Setting: 01

Default Setting: 00

Settings: 00 - Constant Torque (inverter/vector duty motor)

01 - Variable Torque (fan-cooled standard motor)

02 - Inactive

This function setting 01 is used to derate the AC drive output current overload protection to protect a fan-cooled standard motor running at low speeds.

P 8.00 User Defined Display Function

Setting: 03

Default Setting: 00

Settings: 00 Output Frequency (Hz)

01 Motor Speed (rpm)

02 Output Frequency x P 8.01

03 Output Current (A)

04 Motor Output Current (%)

05 Output Voltage(V)

06 DC Bus Voltage (V)

07 PID Setpoint

08 PID Feedback (PV)

09 Frequency Setpoint

The AC drive display will default to indicate Output Current (A) when running.

Note: For a complete list and description of the parameters for the GS2 Series AC drives, refer to Chapter 4.

CHAPTER 4

AC DRIVE PARAMETERS

In This Chapter...

GS2 Parameter Summary
Detailed Parameter Listings4–11
Motor Parameters4–11
Ramp Parameters
Volts/Hertz Parameters
Digital Parameters4–22
Setting Explanations for parameters P3.02 - P3.054–24
Analog Parameters
Analog Input Examples
Preset Parameters4–41
Protection Parameters4–43
PID Parameters
Display Parameters
Communication Parameters

GS2 Parameter Summary

	Motor Parameters					
GS2 Parameter	Description	Range	Default			
P0.00	Motor Nameplate Voltage	115V/230V: 200/208/220/230/240 460V: 380/400/415/440/460/480 575V: 380 to 637	240 480 575			
P0.01	Motor Nameplate Amps	Drive Rated Amps X .3 to 1.0	Drive Rated Amps x 1.0			
P0.02	Motor Base Frequency	50/60/400	60			
P0.03	Motor Base RPM	375 to 9999 RPM	1750			
P0.04	Motor Maximum RPM	P0.03 to 9999 RPM	P0.03			

Ramp Parameters				
P1.00	Stop Methods	00: Ramp to Stop 01: Coast to Stop	00	
◆ P1.01	Acceleration Time 1	0.1 to 600.0 sec	10.0	
◆ P1.02	Deceleration Time 1	0.1 to 600.0 sec	30.0	
P1.03	Accel S-curve	0 to 7	00	
P1.04	Decel S-curve	0 to 7	00	
◆ P1.05	Acceleration Time 2	0.1 to 600.0 sec	10.0	
◆ P1.06	Deceleration Time 2	0.1 to 600.0 sec	30.0	
P1.07	Select method to use 2nd Accel/Decel	00: RMP2 from DI terminal 01: Transition Frequencies P1.08 & P1.09	00	
P1.08	Accel 1 to Accel 2 frequency transition	0.0 to 400.0 Hz	0.0	
P1.09	Decel 2 to Decel 1 frequency transition	0.0 to 400.0 Hz	0.0	
P1.10	Skip Frequency 1	0.0 to 400.0 Hz	0.0	
P1.11	Skip Frequency 2	0.0 to 400.0 Hz	0.0	
P1.12	Skip Frequency 3	0.0 to 400.0 Hz	0.0	
P1.17	Skip Frequency Band	0.0 to 20.0 Hz	0.0	
P1.18	DC Injection Current Level	00 to 100 %	00	
P1.20	DC Injection during Start-up	0.0 to 5.0 sec	0.0	
P1.21	DC Injection during Stopping	0.0 to 25.0 sec	0.0	
P1.22	Start-point for DC Injection	0.0 to 60.0 Hz	0.0	

[◆] Parameter can be set during RUN Mode.

	Volts/Hertz Parameters				
GS2 Parameter	Description	Rar	nge	Default	
P2.00	Volts/Hertz Settings	00: General Purpose 01: High Starting Torq 02: Fans and Pumps 03: Custom	ue	00	
♦ P2.01	Slip Compensation	0.0 to	10.0	0.0	
♦ P2.02	Auto-torque Boost	00 t	o 10	00	
P2.04	Mid-point Frequency	0.1 to	400 Hz	1.5	
P2.05	Mid-point Voltage	115V/230V: 460V: 575V:	2.0 to 255V 2.0 to 510V 2.0 to 637V	10.0 20.0 24.0	
P2.06	Min. Output Frequency	0.1 to 2	0.1 to 20.0 Hz		
P2.07	Min. Output Voltage	115V/230V: 460V: 575V:	2.0 to 50.0V 2.0 to 100.0V 2.0 to 130.6V	10.0 20.0 24.0	
P2.08	PWM Carrier Frequency	115V/230V/460V 575V	01 to 15 kHz 01 to 10 kHz	12 6	

Digital Parameters				
P3.00	Source of Operation Command	 00: Operation determined by digital keypad 01: Operation determined by external control terminals, keypad STOP is enabled 02: Operation determined by external control terminals, keypad STOP is disabled 03: Operation determined by RS-485 interface, keypad STOP is enabled 04: Operation determined by RS-485 interface, keypad STOP is disabled 	00	
P3.01	Multi-function Input Terminals (DI1 - DI2)	00: DI1 - FWD / STOP, DI2 - REV / STOP 01: DI1 - RUN / STOP, DI2- REV / FWD 02: DI1 - RUN momentary (N.O.) DI2 - REV / FWD DI3 - STOP momentary (N.C.)	00	

[◆] Parameter can be set during RUN Mode.

Digital Parameters (cont.)				
GS2 Parameter	Description	Range	Default	
P3.02	Multi-function Input (DI3)	00: External Fault (N.O.) 01: External Fault (N.C.) 02: External Reset 03: Multi-Speed/PID SP Bit 1 04: Multi-Speed/PID SP Bit 2	00	
P3.03	Multi-function Input (DI4)	05: Multi-Speed/PID SP Bit 3 06: Reserved 07: Reserved 08: Reserved 09: Jog	03	
P3.04	Multi-function Input (DI5)	10: External Base Block (N.O.)11: External Base Block (N.C.)12: Second Accel/Decel Time13: Speed Hold14: Increase Speed	04	
P3.05	Multi-function Input (DI6)	15: Decrease Speed 16: Reset Speed to Zero 17: PID Disable (N.O.) 18: PID Disable (N.C.) 99: Input Disable	05	
P3.11	Multi-Function Output Terminal	00: AC Drive Running01: AC Drive Fault02: At Speed03: Zero Speed04: Above Desired Frequency05: Below Desired Frequency	00	
P3.12	Multi-Function Output Terminal 2	06: At Maximum Speed07: Over torque detected08: Above Desired Current09: Below Desired Current10: PID Deviation Alarm	01	
♦ P3.16	Desired Frequency	0.0 to 400.0 Hz	0.0	
♦ P3.17	Desired Current	0.0 to <drive amps="" rated=""></drive>	0.0	
♦ P3.18	PID Deviation Level	1.0 to 50.0 %	10.0	
♦ P3.19	PID Deviation Time	0.1 to 300.0 sec	5.0	

[◆] Parameter can be set during RUN Mode.

Analog Parameters				
GS2 Parameter	Description	Range	Default	
P4.00	Source of Frequency Command	00: Frequency determined by keypad potentiometer 01: Frequency determined by digital keypad up/down 02: Frequency determined by 0 to +10V input on AI terminal with jumpers 03: Frequency determined by 4 to 20mA input on AI terminal with jumpers 04: Frequency determined by 0 to 20mA input on AI terminal with jumpers 05: Frequency determined by RS-232C/RS-485 communication interface	00	
P4.01	Analog Input Offset Polarity	00: No Offset 01: Positive Offset 02: Negative Offset	00	
◆ P4.02	Analog Input Offset	0.0 to 100.0%	0.0	
◆ P4.03	Analog Input Gain	0.0 to 300.0%	100.0	
P4.04	Analog Input Reverse Motion Enable	00: Forward Motion Only 01: Reverse Motion Enable	00	
P4.05	Loss of ACI Signal (4-20mA)	00: Decelerate to 0Hz01: Stop immediately and display error code "EF"02: Continue operation by the last frequency command	00	
◆ P4.11	Analog Output Signal	00: frequency Hz 01: Current A 02: PV	00	
♦ P4.12	Analog Output Gain	00 to 200%	100	

	Presets					
◆ P5.00	Jog	0.0 to 400.0 Hz	6.0			
◆ P5.01	Multi-Speed 1	0.0 to 400.0 Hz	0.0			
◆ P5.02	Multi-Speed 2	0.0 to 400.0 Hz	0.0			
◆ P5.03	Multi-Speed 3	0.0 to 400.0 Hz	0.0			
◆ P5.04	Multi-Speed 4	0.0 to 400.0 Hz	0.0			
◆ P5.05	Multi-Speed 5	0.0 to 400.0 Hz	0.0			
◆ P5.06	Multi-Speed 6	0.0 to 400.0 Hz	0.0			
◆ P5.07	Multi-Speed 7	0.0 to 400.0 Hz	0.0			

[◆] Parameter can be set during RUN Mode.

Protection Parameters				
GS2 Parameter	Description	Range	Default	
P6.00	Electronic Thermal Overload Relay	00: Constant Torque 01: Variable Torque 02: Inactive	00	
P6.01	Auto Restart after Fault	00 to 10	00	
P6.02	Momentary Power Loss	 00: Stop operation after momentary power loss 01: Continue operation after momentary power loss, speed search from Speed Reference 02: Continue operation after momentary power loss, speed search from Minimum Speed 	00	
P6.03	Reverse Operation Inhibit	00: Enable Reverse Operation 01: Disable Reverse Operation	00	
P6.04	Auto Voltage Regulation	00: AVR enabled 01: AVR disabled 02: AVR disabled during decel 03: AVR disabled during stop	00	
P6.05	Over-Voltage Stall Prevention	00: Enable Over-voltage Stall Prevention 01: Disable Over-voltage Stall Prevention	00	
P6.06	Auto Adjustable Accel/Decel	00: Linear Accel/Decel 01: Auto Accel, Linear Decel 02: Linear Accel, Auto Decel 03: Auto Accel/Decel 04: Auto Accel/Decel Stall Prevention (limited by P1.01, P1.02, P1.05, P1.06)	00	
P6.07	Over-Torque Detection Mode	00: Disabled01: Enabled during constant speed operation02: Enabled during acceleration	00	
P6.08	Over-Torque Detection Level	30 to 200%	150	
P6.09	Over-Torque Detection Time	0.1 to 10.0	0.1	
P6.10	Over-Current Stall Prevention during Acceleration	20 to 200%	150	
P6.11	Over-Current Stall Prevention during Operation	20 to 200%	150	
P6.12	Maximum Allowable Power Loss Time	0.3 to 5.0 sec	2.0	
P6.13	Base-Block Time for Speed Search	0.3 to 5.0 sec	0.5	
P6.14	Maximum Speed Search Current Level	30 to 200%	150	
P6.15	Upper Bound of Output Frequency	0.1 to 400Hz	400	
P6.16	Lower Bound of Output Frequency	0.0 to 400Hz	0.0	
P6.30	Line Start Lockout	00: Enable Line Start Lockout 01: Disable Line Start Lockout	00	

[◆] Parameter can be set during RUN Mode.

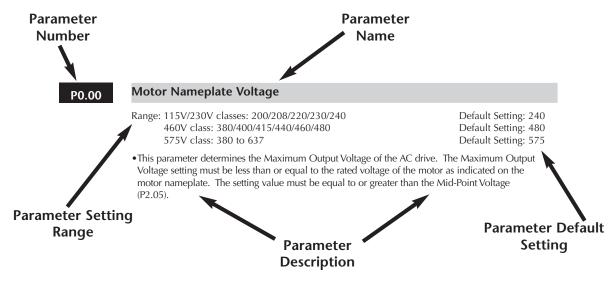
	Protection Parameters (cont.)					
GS2 Parameter	Description	Range	Default			
P6.31	Present Fault Record	00: No Fault occurred 01: Over-current (oc) 02: Over-voltage (ov) 03: Overheat (oH)	00			
P6.32	Second Most Recent Fault Record	03. Overheat (01) 04: Overload (0L) 05: Overload 1 (0L1) 06: Overload 2 (0L2)	00			
P6.33	Third Most Recent Fault Record	07: External Fault (EF) 08: CPU failure 1 (CF1) 09: CPU failure 2 (CF2) 10: CPU failure 3 (CF3)	00			
P6.34	Fourth Most Recent Fault Record	11: Hardware Protection Failure (HPF) 12: Over-current during accel (OCA) 13: Over-current during decel (OCd)	00			
P6.35	Fifth Most Recent Fault Record	14: Over-current during steady state (OCn) 15:Ground fault or fuse failure (GFF) 16: Reserved 17: Input power 3-phase loss	00			
P6.36	Sixth Most Recent Fault Record	18: External Base-Block (bb) 19: Auto Adjust accel/decel failure (cFA) 20: Software protection code (codE)	00			

[◆] Parameter can be set during RUN Mode.

	PID Parameters				
GS2 Parameter	Description	Range	Default		
P7.00	Input Terminal for PID Feedback	 00: Inhibit PID operation 01: Forward-acting (heating loop) PID feedback, PV from AVI (0 to + 10V) 02: Forward-acting (heating loop) PID feedback, PV from ACI (4 to 20mA) 03: Reverse-acting (cooling loop) PID feedback, PV from AVI (0 to +10V). 04: Reverse-acting (cooling loop) PID feedback, PV from ACI (4 to 20mA). 	00		
P7.01	PV 100% Value	0.0 to 999	100.0		
P7.02	PID Setpoint Source	00: Keypad 01: Serial Communications	00		
♦ P7.10	Keypad PID Setpoint	0.0 to 999	0.0		
◆ P7.11	PID Multi-setpoint 1	0.0 to 999	0.0		
◆ P7.12	PID Multi-setpoint 2	0.0 to 999	0.0		
◆ P7.13	PID Multi-setpoint 3	0.0 to 999	0.0		
◆ P7.14	PID Multi-setpoint 4	0.0 to 999	0.0		
◆ P7.15	PID Multi-setpoint 5	0.0 to 999	0.0		
♦ P7.16	PID Multi-setpoint 6	0.0 to 999	0.0		
◆ P7.17	PID Multi-setpoint 7	0.0 to 999	0.0		
◆ P7.20	Proportional Control	0.0 to 10.0	1.0		
◆ P7.21	Integral Control	0.00 to 100.0 sec	1.00		
♦ P7.22	Derivative Control	0.00 to 1.00 sec	0.00		
P7.23	Upper Bound for Integral Control	00 to 100%	100		
P7.24	Derivative Filter Time Constant	0.0 to 2.5 sec	0.0		
P7.25	PID Output Frequency Limit	00 to 110%	100		
P7.26	Feedback Signal Detection Time	0.0 to 3600 sec.	60		
P7.27	PID Feedback Loss	00: Warn and AC Drive Stop 01: Warn and Continue Operation	00		

	Display Parameters			
◆ P8.00	User Defined Display Function	00: Output Frequency (Hz) 01: Motor Speed (RPM) 02: Output Freq. X P8.01 03: Output Current (A) 04: Motor Output Current (%) 05: Output Voltage (V) 06: DC Bus Voltage (V) 07: PID Setpoint 08: PID Feedback Signal (PV) 09: Frequency Setpoint	00	
◆ P8.01	Frequency Scale Factor	0.01 to 160.0	1.0	

[◆] Parameter can be set during RUN Mode.


Communications Parameters			
GS2 Parameter	Description	Range	Default
P9.00	Communication Address	01 to 254	01
P9.01	Transmission Speed	00: 4800 baud 01: 9600 baud 02: 19200 baud 03: 38400 baud	01
P9.02	Communication Protocol	00: Modbus ASCII mode 7 data bits,no parity,2 stop bits 01: Modbus ASCII mode 7 data bits,even parity,1 stop bit 02: Modbus ASCII mode 7 data bits,odd parity,1 stop bit 03: Modbus RTU mode 8 data bits,no parity,2 stop bits 04: Modbus RTU mode 8 data bits,even parity,1 stop bit 05: Modbus RTU mode 8 data bits,odd parity,1 stop bit	00
P9.03	Transmission Fault Treatment	00: Display fault and continue operating01: Display fault and RAMP to stop02: Display fault and COAST to stop03: No fault displayed and continue operating	00
P9.04	Time Out Detection	00: Disable 01: Enable	00
P9.05	Time Out Duration	0.1 to 60.0 seconds	0.5
♦ P9.07	Parameter Lock	00: All parameters can be set and read 01: All parameters are read-only	00
P9.08	Restore to Default	99: Restores all parameters to factory defaults	00
♦ P9.11	Block Transfer Parameter 1	P0.00 to P8.01, P9.99	P9.99
♦ P9.12	Block Transfer Parameter 2	P0.00 to P8.01, P9.99	P9.99
♦ P9.13	Block Transfer Parameter 3	P0.00 to P8.01, P9.99	P9.99
♦ P9.14	Block Transfer Parameter 4	P0.00 to P8.01, P9.99	P9.99
♦ P9.15	Block Transfer Parameter 5	P0.00 to P8.01, P9.99	P9.99
♦ P9.16	Block Transfer Parameter 6	P0.00 to P8.01, P9.99	P9.99
♦ P9.17	Block Transfer Parameter 7	P0.00 to P8.01, P9.99	P9.99
♦ P9.18	Block Transfer Parameter 8	P0.00 to P8.01, P9.99	P9.99
♦ P9.19	Block Transfer Parameter 9	P0.00 to P8.01, P9.99	P9.99
♦ P9.20	Block Transfer Parameter 10	P0.00 to P8.01, P9.99	P9.99
♦ P9.21	Block Transfer Parameter 11	P0.00 to P8.01, P9.99	P9.99
♦ P9.22	Block Transfer Parameter 12	P0.00 to P8.01, P9.99	P9.99

Parameter can be set during RUN Mode.

GS2 Parameter	Description	Parameters (continued) Range	Default
◆ P9.23	Block Transfer Parameter 13	P0.00 to P8.01	P9.99
◆ P9.24	Block Transfer Parameter 14	P0.00 to P8.01	P9.99
◆ P9.25	Block Transfer Parameter 15	P0.00 to P8.01	P9.99
▶ P9.26	Serial Comm Speed Reference	0.0 to 400.0 Hz	60.0
▶ P9.27	Serial Comm RUN Command	00: Stop 01: Run	00
▶ P9.28	Serial Comm Direction Command	00: Forward 01: Reverse	00
▶ P9.29	Serial Comm External Fault	00: No fault 01: External fault	00
P9.30	Serial Comm Fault Reset	00: No action 01: Fault Reset	00
P9.31	Serial Comm JOG Command	00: Stop 01: Jog	00
P9.39	Firmware Version	#.##	#.##
P9.41	GS Series Number	01: GS1 02: GS2 03: GS3	##
P9.42	Manufacturer Model Information	00: GS2-20P5 (230V 1ph/3ph 0.5hp) 01: GS2-21P0 (230V 1ph/3ph 1hp) 02: GS2-22P0 (230V 1ph/3ph 2hp) 03: GS2-23P0 (230V 1ph/3ph 3hp) 04: GS2-25P0 (230V 3ph 5hp) 05: GS2-27P5 (230V 3ph 7.5hp) 06: Reserved 07: GS2-41P0 (460V 3ph 1hp) 08: GS2-42P0 (460V 3ph 3hp) 10: GS2-43P0 (460V 3ph 5hp) 11: GS2-47P5 (460V 3ph 5hp) 12: GS2-4010 (460V 3ph 10hp) 13: GS2-10P2 (115V 1ph 0.25hp) 14: GS2-10P5 (115V 1ph 0.5hp) 15: GS2-11P0 (115V 1ph 1hp) 16~20: Reserved 21: GS2-51P0 (575V 3ph 1hp) 22: GS2-52P0 (575V 3ph 3hp) 24: GS2-55P0 (575V 3ph 5hp) 25: GS2-57P5 (575V 3ph 7.5hp) 26: GS2-5010 (575V 3ph 10hp)	##

[◆] Parameter can be set during RUN Mode.

Detailed Parameter Listings

Note: If the \spadesuit symbol is found next to the parameter name, the parameter can be edited when the AC drive is in RUN Mode.

Motor Parameters

P0.00

Motor Nameplate Voltage

Range: 115V/230V classes: 200/208/220/230/240 Default Setting: 240 460V class: 380/400/415/440/460/480 480 575V class: 380 to 637 575

This parameter determines the Maximum Output Voltage of the AC drive. The Maximum Output Voltage setting must be less than or equal to the rated voltage of the motor as indicated on the motor nameplate. The setting value must be equal to or greater than the Mid-Point Voltage (P2.05).

P0.01

Motor Nameplate Amps

Range: Drive Rated Amps x 0.3 to Default Setting: Drive Rating (A)
Drive Rated Amps x 1.0

This parameter sets the output current to the motor, and is used by the drive to set the motor overload protection. Set this parameter value to the full load current listed on the motor nameplate. (Also refer to P6.00 to set overload curve type.)

P0.02 Motor Base Frequency

Range: 50/60/400 Default Setting 60

• This value should be set according to base frequency of the motor as indicated on the motor nameplate. Motor Base Frequency determines the volts per hertz ratio.

P0.03 Motor Base RPM

Range: 375 to 9999 RPM Default Setting: 1750

• This value should be set according to rated Base RPM of the motor as indicated on the motor nameplate.

P0.04 Motor Maximum RPM

Range: P0.03 to 9999 RPM Default Setting: P0.03

• This value should be set according to the desired maximum speed of the motor. This value should not exceed the motor's maximum rated speed.

WARNING: The Motor Maximum RPM parameter (P0.04) should never exceed the maximum speed rating for the motor you are using. If this information is not readily available, consult your motor manufacturer.

• This value cannot be set lower than Motor Base RPM (P0.03).

This parameter, along with P0.02 and P0.03, determines the Maximum Output Frequency of the AC Drive. The Maximum Output Frequency can be calculated as follows:

Max. Output Frequency =
$$\left(\frac{\text{Motor Max. RPM (P0-04)}}{\text{Motor Base RPM (P0-03)}}\right)$$
 x Base Frequency (P0-02)

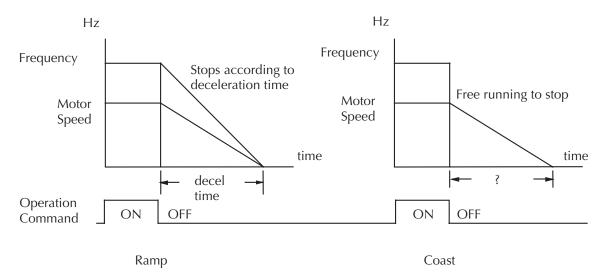
• If an output limit based on Maximum Output Frequency is desired, use the following equation to determine the corresponding value for Motor Maximum RPM:

Motor Maximum RPM =
$$\left(\frac{\text{Max. Output Frequency}}{\text{Motor Base Frequency }}\right) \times \text{Motor Base RPM } (P 0.03)$$

Ramp Parameters

P1.00

Stop Methods


Range: 00 Ramp to Stop 01 Coast to stop Default Setting: 00

This parameter determines how the motor is stopped when the AC drive receives a valid stop command.

- Ramp: The AC drive decelerates the motor to Minimum Output Frequency (P2.06) and then stops according to the deceleration time set in P1.02 or P1.06.
- Coast: The AC drive stops output instantly upon command, and the motor free runs until it comes to a complete stop.

Note: The drive application or system requirements will determine which stop method is needed.

P1.01

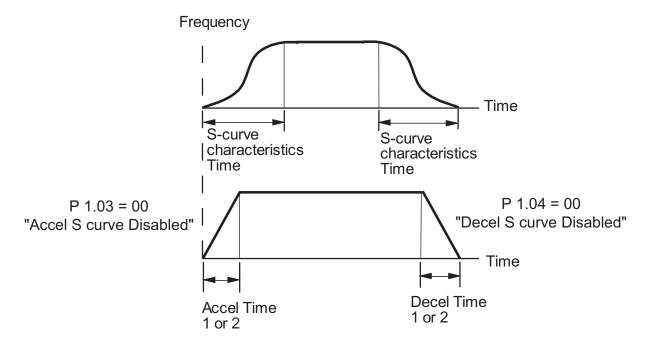
◆ Acceleration Time 1

Range: 0.1 to 600 sec

Default Setting: 10 sec

This parameter is used to determine the time required for the AC drive to ramp from 0 to its Maximum Motor RPM (P0.04). The rate is linear unless S-Curve is "Enabled."

P1.02 ♦ Deceleration Time 1

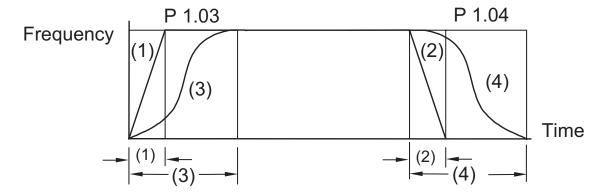

Range: 0.1 to 600 sec Default Setting: 30 sec

This parameter is used to determine the time required for the AC drive to decelerate from the Maximum Motor RPM (P0.04) down to 0Hz. The rate is linear unless S-Curve is "Enabled."

P1.03 Accel S-Curve

Range: 00 to 07 Default Setting: 00

This parameter is used whenever the motor and load need to be accelerated more smoothly. The Accel S-Curve may be set from 0 to 7 to select the desired acceleration S Curve.



P1.04 Decel S-Curve

Range: 00 to 07 Default Setting: 00

This parameter is used whenever the motor and load need to be decelerated more smoothly. The Decel S-Curve may be set from 00 to 07 to select the desired deceleration S-Curve.

Note: From the diagram shown below, the original setting accel/decel time will be for reference when the function of the S-curve is enabled. The actual accel/decel time will be determined based on the S-curve selected (1 to 7).

S curve is disabled in (1), (2)

P 1.03 sets S curve for (3)

P 1.04 sets S curve for (4)

P1.05 ♦ Acceleration Time 2

Range: 0.1 to 600 sec Default Setting: 10.0

•The Second Acceleration Time determines the time for the AC drive to accelerate from 0 RPM to Maximum Motor RPM (P0.04). Acceleration Time 2 (P1.05) can be selected using a multi-function input terminal or frequency transition (P1.07).

P1.06 ◆ Deceleration Time 2

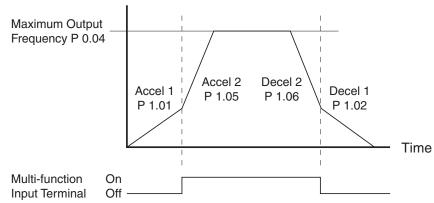
Range: 0.1 to 600 sec Default Setting: 30 sec

•The Second Deceleration Time determines the time for the AC drive to decelerate from Maximum Motor RPM (P0.04) to 0 RPM. Deceleration Time 2 (P1.06) can be selected using a multi-function input terminal or frequency transition (P1.07).

P1.07

Select method for 2nd Accel/Decel

Range: 00: Second Accel/Decel from DI terminal

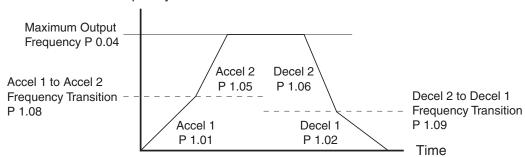

Default Setting: 00

01: Frequency Transition P1.08 & P1.09

• The second set of acceleration and deceleration times P1.05 and P1.06 can be selected either with a multi-function input terminal programmed to Second Accel/Decel, or by the values of the transition frequencies P1.08 and P1.09

Second Accel/Decel Times selected with Multi-Function Input Terminal

P1.08


Accel 1 to Accel 2 Frequency Transition

Range: 0.0 to 400.0 Hz

Default Setting: 0.0

Second Accel/Decel Times selected with Frequency Transition

P1.09

Decel 1 to Decel 2 Frequency Transition

Range: 0.0 to 400.0 Hz

Default Setting: 0.0

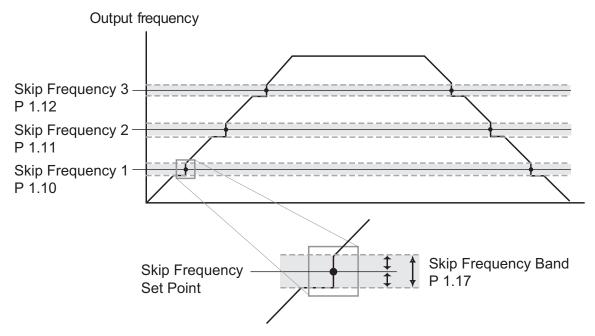
P1.10 Skip Frequency 1

Range: 0.0 to 400.0 Hz Default Setting: 0.0

P1.11 Skip Frequency 2

Range: 0.0 to 400.0 Hz Default Setting: 0.0

P1.12 Skip Frequency 3


Range: 0.0 to 400.0 Hz Default Setting: 0.0

• P1.10, P1.11, and P1.12 determine the location of the frequency bands that will be skipped during AC drive operation.

P1.17 Skip Frequency Band

Range: 0.0 to 20.0 Hz Default Setting: 0.0

This parameter determines the frequency band for a given Skip Frequency (P1.10, P1.11, or P1.12). Half of the Skip Frequency Band is above the Skip Frequency and the other half is below. Programming this parameter to 0.0 disables all skip frequencies.

P1.18 DC Injection Current Level

Range: 00 to 100% Default Setting: 00

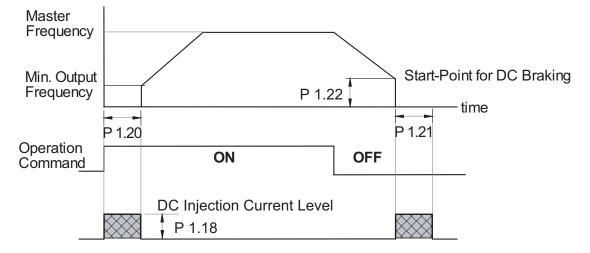
This parameter determines the amount of DC Braking Current applied to the motor during start-up and stopping. When setting DC Braking Current, please note that 100% is equal to the rated current of the drive. It is recommended to start with a low DC Braking Current Level and then increase until proper holding torque has been attained.

P1.20 DC Injection during Start-up

Range: 0.0 to 5.0 sec Default Setting: 0.0

This parameter determines the duration of time that the DC Braking Current will be applied to the motor during the AC drive start-up. DC Braking will be applied for the time set in this parameter until the Minimum Frequency is reached during acceleration.

P1.21 DC Injection during Stopping


Range: 0.0 to 25.0 sec Default Setting: 0.0

This parameter determines the duration of time that the DC braking voltage will be applied to the motor during stopping. If stopping with DC Braking is desired, then P1.00 must be set to Ramp to Stop (00).

P1.22 Start-point for DC Injection

Range: 0.0 to 60.0 Hz Default Setting: 0.0

This parameter determines the frequency when DC Braking will begin during deceleration.

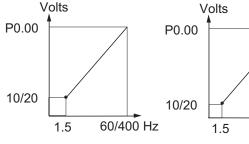
Volts/Hertz Parameters

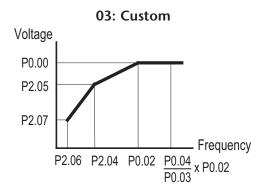
P2.00

Volts/Hertz Settings

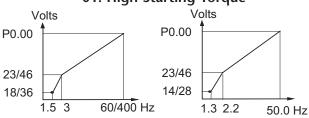
Settings: 00 - General Purpose (constant torque)

Default Setting: 0.0

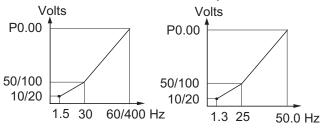

- 01 High Starting Torque
- 02 Fans and Pumps (variable torque)
- 03 Custom


Note: P2.04 through P2.07 are only used when the Volts/Hertz parameter (P2.00) is set to 03.

50.0 Hz



60/400Hz Base Frequency 50Hz Base Frequency



01: High Starting Torque

60/400Hz Base Frequency 50Hz Base Frequency

02: Fans and Pumps

60/400Hz Base Frequency 50Hz Base Frequency

P2.01

Slip Compensation

Range: 0.0 to 10.0 Default Setting: 0.0

When controlling an asynchronous induction motor, load on the AC drive will increase causing an increase in slip. This parameter may be used to compensate the nominal slip within a range of 0 to 10. When the output current of the AC drive is greater than the Motor Nameplate Amps (P0.01), the AC drive will adjust its output frequency according to this parameter.

P2.02

♦ Auto-torque Boost

Range: 00 to 10 Default Setting: 00

This parameter functions similarly to the P2.00-01 High Starting Torque V/Hz setting, except that this parameter uses less current than does P2.00-01. P2.00-01 boosts starting torque by increasing current at every start beyond what is required to move the load. P2.02 Auto-torque Boost increases the current only as required to move the load. The proper setting for P2.02 is determined by trial and error.

P2.04 through P2.07 are used only when the Volts/Hertz parameter (P2.00) is set to 03.

P2.04

Mid-point Frequency

Range: 0.1 to 400 Hz Default Setting: 1.5

This parameter sets the Mid-Point Frequency of V/F curve. With this setting, the V/F ratio between Minimum Frequency and Mid-Point frequency can be determined.

This parameter must be greater than or equal to the Minimum Output Frequency (P2.06) and less than or equal to the Maximum Voltage Frequency (P0.02). This parameter is used only when the Volts/Hertz parameter (P2.00) is set to 03.

P2.05

Mid-point Voltage

Range: 115V/230V: 2.0 to 255V Default Setting: 10.0

460V: 2.0 to 510V 20.0 575V: 2.0 to 637V 24.0

This parameter sets the Mid-Point Voltage of any V/F curve. With this setting, the V/F ratio between Minimum Frequency and Mid-Point Frequency can be determined.

This parameter must be greater than or equal to the Minimum Output Voltage (P2.07) and less than or equal to the Maximum Output Voltage (P0.00). This parameter is used only when the Volts/Hertz parameter (P2.00) is set to 03.

P2.06 Minimum Output Frequency

Range: 0.1 to 20.0 Hz Default Setting: 1.5

This parameter sets the Minimum Output Frequency of the AC drive.

This parameter must be less than or equal to the Mid-Point Frequency (P2.04). This parameter is used only when the Volts/Hertz parameter (P2.00) is set to 03.

P2.07 Minimum Output Voltage

Range: 115V/230V: 2.0 to 50.0V Default Setting: 10.0 460V: 2.0 to 100.0V 20.0

575V: 2.0 to 130.6V 24.0

This parameter sets the Minimum Output Voltage of the AC drive.

This parameter must be equal to or less than Mid-Point Voltage (P2.05). This parameter is used only when the Volts/Hertz parameter (P2.00) is set to 03.

P2.08 PWM Carrier Frequency

Range: 115V/230V/460V: 01 to 15 kHz Default Setting: 12

575V: 01 to 10 kHz

This parameter sets the carrier frequency of PWM (Pulse-Width Modulated) output.

• In the table below, we see that the carrier frequency of PWM output has a significant influence on the electromagnetic noise, leakage current, heat dissipation of the AC drive and the acoustic noise to the motor:

Carrier Frequency	Acoustic Noise	Electromagnetic Noise, Leakage Current	Heat Dissipation
1kHz	significant	minimal	minimal
15 kHz	minimal	moderate	moderate

Digital Parameters

P3.00

Source of Operation Command

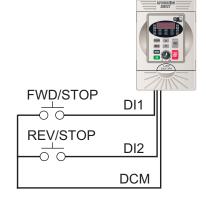
Default Setting: 00

		Beladit Setting.
Settings	00	Operation Determined by Digital Keypad
	01	Operation determined by external control terminals. Keypad STOP is enabled.
	02	Operation determined by external control terminals. Keypad STOP is disabled.
	03	Operation determined by communication interface. Keypad STOP is enabled.
	04	Operation determined by communication interface. Keypad STOP is disabled.

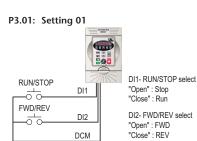
- This parameter sets the input source for the AC drive operation commands.
- Refer to P3.01 to P3.05 for more details.

P3.01

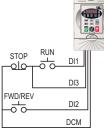
Multi-function Input Terminals (DI-DI2)


Default Setting: 00

Settings	00	DI1 - FWD/STOP DI2 - REV/STOP
	01	DI1 - RUN/STOP DI2 - REV/FWD
	02	DI1 - RUN (N.O. latching input) DI2 - REV/FWD DI3 - STOP (N.C. latching input)



Note: Multi-function Input Terminals DI1 and DI2 do not have separate parameter designations. DI1 and DI2 must be used in conjunction with each other to operate two and three wire control.


P3.01: Setting 00

DI1	DI2	Result
OFF	OFF	STOP
ON	OFF	FWD
OFF	ON	REV
ON	ON	STOP

P3.01: Setting 02

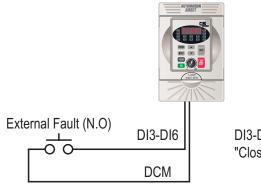
DI1- RUN command Latching input (N.O.) Runs when closed

DI2- FWD/REV select "Open" : FWD "Close" : REV

DI3- STOP command Latching input (N.C.) Stops when open

P3.02	Multi-Function Input (DI3)	Default Setting: 00
P3.03	Multi-Function Input (DI4)	Default Setting: 03
P3.04	Multi-function Input (DI5)	Default Setting: 04
P3.05	Multi-function Input (DI6)	Default Setting: 05

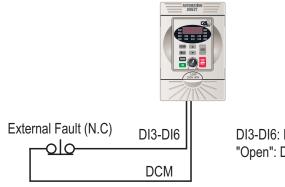
Settings for P3.02 to P3.05:


0	
00	*External Fault (N.O.)
01	*External Fault (N.C.)
02	External Reset
03	Multi-Speed/PID SP Bit 1
04	Multi-Speed/PID SP Bit 2
05	Multi-Speed/PID SP Bit 3
06	Reserved
07	Reserved
08	Reserved
09	Jog
10	External Base Block (N.O.)
11	External Base Block (N.C.)
12	Second Accel/Decel Time
13	Speed Hold
14	Increase Speed (P4.00 must be set to 01)
15	Decrease Speed (P4.00 must be set to 01)
16	Reset Speed to Zero (P4.00 must be set to 01)
17	PID Disable (N.O.)
18	PID Disable (N.C.)
99	Input Disable

^{*} Use either 00 or 01, but not both. Use interposing relays if more contacts are needed.

Setting Explanations for parameters P3.02 - P3.05

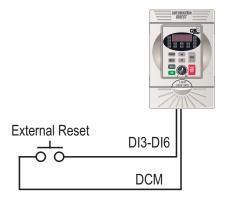
Setting 00: External Fault (N.O.)


When an External Fault input signal is received, the AC drive output will turn off, the drive will display "EF" on the LED Display, and the motor will Coast to Stop. To resume normal operation, the external fault must be cleared, and the drive must be reset.

DI3-DI6: External Fault (N.O.)

"Close": Drive receives external fault input signal

Setting 01: External Fault (N.C.)



DI3-DI6: External Fault (N.C.)

"Open": Drive receives external fault input signal

Setting 02: External Reset

An External Reset has the same function as the Reset key on the digital keypad. Use an External Reset to reset the drive after a fault.


DI3-DI6: External Reset

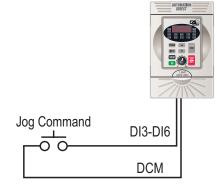
"Close": Drive receives external reset input signal

Settings 03, 04, and 05: Multi-Speed/PID SP Bits 1, 2, and 3

If PID operation is inhibited (P7.00 = 00), the three Multi-Speed/PID SP Bits are used to select the multi-speed settings defined by P5.01 to P5.07.

If PID operation is enabled (P7.00 \neq 00), the three Multi-Speed/PID SP Bits are used to select the PID multi-setpoint settings defined by P7.11 to P7.17.

Multi-Spd/PID SP			Speed	PID SP
Bit 3	Bit 2	Bit 1	Selection	Selection
OFF	OFF	OFF	P4.00	P7.02
OFF	OFF	ON	P5.01: Spd 1	P7.11: SP 1
OFF	ON	OFF	P5.02: Spd 2	P7.12: SP 2
OFF	ON	ON	P5.03: Spd 3	P7.13: SP 3
ON	OFF	OFF	P5.04: Spd 4	P7.14: SP 4
ON	OFF	ON	P5.05: Spd 5	P7.15: SP 5
ON	ON	OFF	P5.06: Spd 6	P7.16: SP 6
ON	ON	ON	P5.07: Spd 7	P7.17: SP 7

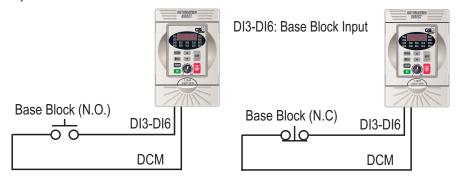

Note: In order to use the Multi-Speed settings, parameters 5.01 to 5.07 must be set. In order to use the Multi-PID SP settings, parameters 7.11 to 7.17 must be set.

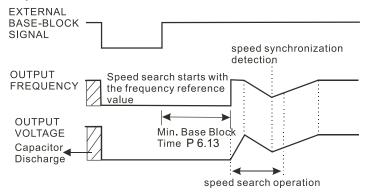
Note: When all multi-speed inputs are off, the AC drive reverts back to the Source of Frequency Command (P4.00), or the PID Setpoint Source (P7.02).

Setting 09: Jog Command

This setting configures a Multi-function Input Terminal to give the Jog Command when activated. P5.00 sets the Jog Speed.

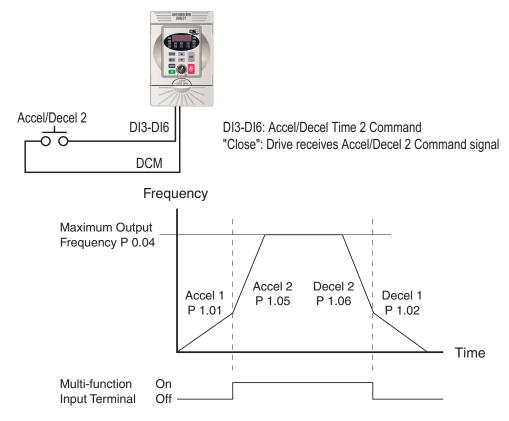
DI3-DI6: Jog Command


"Close": Drive receives Jog Command signal

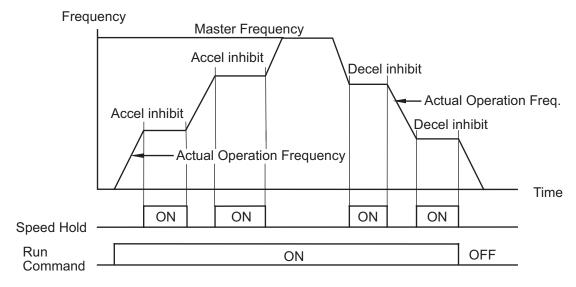

Note: The motor must be stopped to initiate this command. The Jog Command cannot be used simultaneously with an active FWD/STOP, REV/STOP, or RUN/STOP command. The Jog Command can be used with an active REV/FWD command.

Settings 10 and 11: External Base Block (N.O.) and External Base Block (N.C.)

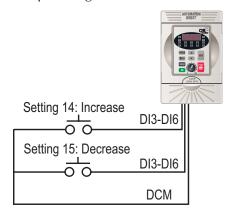
Value 10 is for a normally open (N.O) input and value 11 is for a normally closed (N.C.) input.



When an External Base Block is activated, the LED display shows bb, the AC drive stops all output, and the motor will free run. When the External Base Block is deactivated, the AC drive will start the speed search function and synchronize with the motor speed. The AC drive will then accelerate to the Master Frequency.


Setting 12: Second Accel/Decel Time

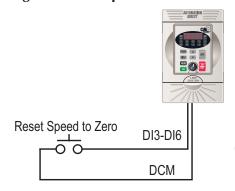
Multi-function Input Terminals DI3-DI6 can be set to select between Accel/Decel times 1 and 2. Parameters P1.01 and P1.02 set Accel 1 and Decel 1 times. Parameters P1.05 and P1.06 set Accel 2 and Decel 2 times.


Setting 13: Speed Hold

When the Speed Hold command is received, the drive acceleration or deceleration is stopped and the drive maintains a constant speed.

Settings 14 and 15: Increase and Decrease Speed (Electronic Motor Operated Potentiometer)

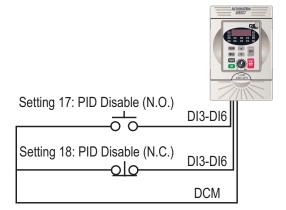
Settings 14 and 15 allow the Multi-function terminals to be used to increase or decrease speed. As long as the DI terminal is activated, the speed reference will continuously increase or decrease according to the acceleration and deceleration ramp settings.



DI3-DI6: Increase or Decrease Frequency "Close": Drive receives Increase or Decrease Frequency Input

Note: In order to use these settings, P4.00 must be set to 01.

Setting 16: Reset Speed to Zero



DI3-DI6: Reset Speed to Zero

"Close": Drive receives Reset Speed to Zero signal

Settings 17 and 18: PID Disable (N.O) and (N.C.)

Settings 17 and 18 set the Multi-function terminals to disable PID operation.

DI3-DI6: PID Disable (N.O.) or (N.C.)

Setting 99: Multi-Function Input Disable

Setting a Multi-Function Input to 99 will disable that input. The purpose of this function is to provide isolation for unused Multi-Function Input Terminals. Any unused terminals should be programmed to 99 to make sure they have no effect on drive operation.

Note: Any **unused terminals** should be programmed to **99** to make sure they have no effect on drive operation.

P3.11 Multi-function Output Terminal 1

Default Setting: 00

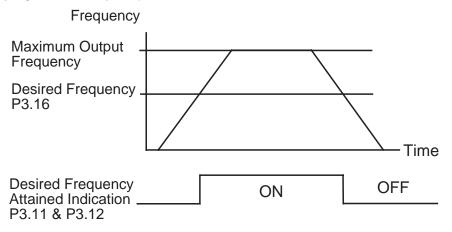
P3.12 Multi-function Output Terminal 2

Default Setting: 01

Settings for P3.11 to P3.12:

Settings:	00	AC Drive Running
	01	AC Drive Fault
	02	At Speed
	03	Zero Speed
	04	Above Desired Frequency (P3.16)
	05	Below Desired Frequency (P3.16)
	06	At Maximum Speed (P0.02)
	07	Over Torque Detected
	80	Above Desired Current (P3.17)
	09	Below Desired Current (P3.17)
	10	PID Deviation Alarm (P3.18 and P3.19)

Setting Function Explanations:


- 00: AC Drive Running—The terminal will be activated when there is an output from the drive.
- 01: AC Drive Fault—The terminal will be activated when one of the faults listed under parameters P6.31 through P6.36 occurs.
- 02: At Speed—The terminal will be activated when the AC drive attains the Command Frequency (P4.00 or P5.01~P5.07).
- 03: Zero Speed—The output will be activated when Command Frequency (P4.00 or P5.01~P5.07) is lower than the Minimum Output Frequency (P2.06).
- 04: Above Desired Frequency—The output will be activated when the AC drive is above the Desired Frequency (P3.16).
- 05: Below Desired Frequency—The output will be activated when the AC drive is below the Desired Frequency (P3.16).
- 06: At Maximum Speed—The output will be activated when the AC drive reaches Motor Maximum RPM (P0.04).
- 07: Over Torque Detected—The output will be activated when the AC drive reaches the Over-torque Detection Level (P6.08), and exceeds this level for a time greater than the Over-torque Detection Time (P6.09).
- 08: Above Desired Current—The output will be activated when the AC drive is above the Desired Current (P3.17).
- 09: Below Desired Current—The output will be activated when the AC drive is below the Desired Current (P3.17).
- 10: PID Deviation Alarm—The output will be activated when the AC drive exceeds the PID Deviation Level (P3.18) for longer than the PID Deviation Time (P3.19).

P3.16 ◆ Desired Frequency

Range: 0.0 to 400.0 Hz

Default Setting: 0.0

•If a Multi-function output terminal is set to function as Desired Frequency Attained (P3.11 or P3.12 = 04 or 05), then the output will be activated when the programmed frequency is attained.

P3.17 ♦ Desired Current

Range: 0.0 to <Drive Rated Amps> Default Setting: 0.0

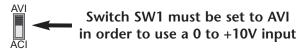
P3.18 • PID Deviation Level

Range: 1.0 to 50.0% Default Setting: 10.0

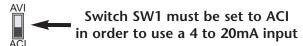
P3.19 ◆ PID Deviation Time

Range: 0.1 to 300.0 sec Default Setting: 5.0

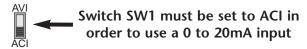
Analog Parameters

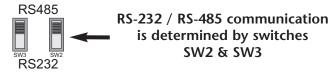

P4.00

Source of Frequency Command


Default: 00

Settings:


- 00 Frequency determined by keypad potentiometer
- 01 Frequency determined by digital keypad up/down
- 02 Frequency determined by 0 to +10V input (including remote potentiometer) on AI terminal. Switch SW1 must be set to AVI.


Frequency determined by 4 to 20mA input on Al terminal. Switch SW1 must be set to ACI.

O4 Frequency determined by 0 to 20mA input on AI terminal. Switch SW1 must be set to ACI.

05 Frequency determined by RS-232/RS-485 communication interface. Switches SW2 and SW3 must be set to RS-232 or RS-485.

P4.01

Analog Input Offset Polarity

Range: 00 Offset disabled

Default Setting: 00

- 01 Positive Offset
- 02 Negative Offset
- This parameter sets the potentiometer Bias Frequency to be positive or negative.
- The Analog Input Offset calculation will also define the Offset Polarity. See the note after P4.02.

P4.02

◆ Analog Input Offset

Range: 0.0 to 100% Default Setting: 0.0

This parameter can be set during the operation

- This parameter provides a frequency offset for an analog input.
- Use the equation below to determine the Analog Input Offset. For this equation, you will need to know the necessary Minimum Frequency References and and Maximum Output Frequency needed for your application.

Analog Offset % =
$$\left(\frac{\text{Min. Frequency Reference}}{\text{Max. Frequency Reference}}\right) \times 100$$

Note: The result of the Analog Input Offset calculation will also define the Analog Input Offset Polarity (P4.01). A positive answer means you should have a positive offset. A negative answer means you should have a negative offset.

P4.03

♦ Analog Input Gain

Range: 0.0 to 300.0% Default Setting: 100.0

This parameter can be set during the operation

- This parameter sets the ratio of analog input vs frequency output.
- Use the equation below to calculate the Analog Input Gain. For this equation, you will need to know the minimum and maximum set-point frequencies needed for your application.

Analog Gain % =
$$\left(\frac{\text{Max. Frequency Reference} - \text{Min. Frequency Reference}}{\text{Maximum Output Frequency}}\right) \times 100$$

P4.04

Analog Input Reverse Motion Enable

Range: 00 Forward Motion Only

01 Reverse Motion Enable

•P4.01 to P4.04 are used when the source of frequency command is the analog signal (0 to +10 VDC, 0 to 20 mADC, or 4 to 20 mADC). Refer to the following examples:

Default Setting: 00

Analog Input Examples

Use the equations below when calculating the values for the Maximum Output Frequency, Analog Input Offset, Analog Input Gain, and the Mid-point Frequency.

A) Max. Output Frequency =
$$\left(\frac{\text{Motor Max. RPM (P0-04)}}{\text{Motor Base RPM (P0-03)}}\right)$$
 x Base Frequency (P0-02)

Note: The Maximum Output Frequency is not a parameter setting, but is needed in order to calculate the Analog Gain. The default Maximum Output Frequency for the GS2 drive is 60Hz. If parameters P0.02, P0.03, or P0.04 are changed, then the Maximum Output Frequency will change.

B) Analog Offset % =
$$\left(\frac{\text{Min. Frequency Reference}}{\text{Max. Frequency Reference}}\right) \times 100$$

C) Analog Gain % =
$$\left(\frac{\text{Max. Frequency Reference} - \text{Min. Frequency Reference}}{\text{Maximum Output Frequency}}\right) \times 100$$

D) Mid-point Freq. =
$$\left(\frac{\text{Max. Freq. Reference} - \text{Min. Freq. Reference}}{2}\right)$$
 + Min. Freq. Reference

Note: The Mid-point Frequency calculation shows the frequency reference of the drive when the potentiometer or other analog device is at its mid-point.

Example 1: Standard Operation

This example illustrates the default operation of the drive. The example is given to further illustrate the use of the analog calculations. The full range of the analog input signal corresponds to the full forward frequency range of the AC drive.

- Minimum Frequency Reference = 0Hz
- Maximum Frequency Reference = 60Hz

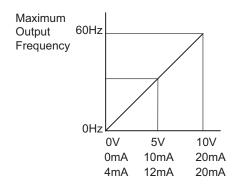
Calculations

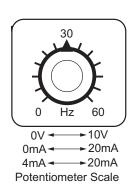
A) Max. Output Frequency =
$$\left(\frac{1750 \text{ RPM}}{1750 \text{ RPM}}\right) \times 60 \text{Hz} = 60 \text{Hz}$$

B) Analog Offset % =
$$\left(\frac{0Hz}{60Hz}\right)$$
 x 100 = $\left(\frac{0\%}{0\%}\right)$

C) Analog Gain % =
$$\left(\frac{60\text{Hz} - 0\text{Hz}}{60\text{Hz}}\right)$$
 x 100 = $\left(\frac{100\%}{100\%}\right)$

D) Mid-point Frequency =
$$\left(\frac{60\text{Hz} - 0\text{Hz}}{2}\right) + 0\text{Hz} = 30\text{Hz}$$


Parameter Settings


P4.01: 01 – Positive Input Offset Polarity

P4.02: 00 – 0% Analog Input Offset

P4.03: 100 – 100% Analog Input Gain

P4.04: 00 – Forward Motion Only

Example 2: Positive Offset

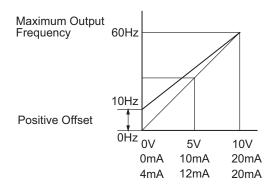
In this example, the Analog Input will have a positive offset while still using the full scale of the potentiometer. When the potentiometer is at its lowest value (0V, 0mA, or 4mA), the set-point frequency will be at 10Hz. When the potentiometer is at its maximum value (10V or 20mA), the set-point frequency will be at 60Hz.

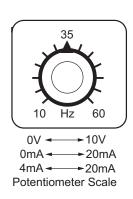
- Minimum Frequency Reference = 10Hz
- Maximum Frequency Reference = 60Hz

Calculations

A) Max. Output Frequency =
$$\left(\frac{1750 \text{ RPM}}{1750 \text{ RPM}}\right) \times 60 \text{Hz} = 60 \text{Hz}$$

B) **Analog Offset % =**
$$\left(\frac{10 \text{Hz}}{60 \text{Hz}}\right) \times 100 = 16.7\%$$


C) Analog Gain % =
$$\left(\frac{60Hz - 10Hz}{60Hz}\right)x \ 100 = 83.3\%$$


D) Mid-point Frequency =
$$\left(\frac{60\text{Hz} - 10\text{Hz}}{2}\right)$$
 + 10Hz = 35Hz

Parameter Settings

P4.01: 01 – Positive Input Offset Polarity P4.02: 16.7 – 16.7% Analog Input Offset P4.03: 83.3 – 83.3% Analog Input Gain

P4.04: 00 - Forward Motion Only

Example 3: Forward and Reverse Operation

In this example, the potentiometer is programmed to run a motor full-speed in both forward and reverse direction. The frequency reference will be 0Hz when the potentiometer is positioned at mid-point of its scale. Parameter P4.04 must be set to enable reverse motion.

Note: When calculating the values for the Analog Input using reverse motion, the reverse frequency reference should be shown using a negative (-) number. Pay special attention to signs (+/-) for values representing reverse motion.

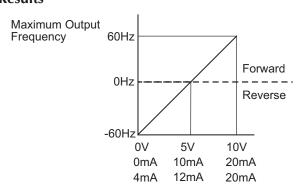
- Minimum Frequency Reference = -60Hz (reverse)
- Maximum Frequency Reference = 60Hz

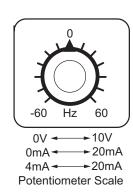
Calculations

A) Max. Output Frequency =
$$\left(\frac{1750 \text{ RPM}}{1750 \text{ RPM}}\right) \times 60 \text{Hz} = 60 \text{Hz}$$

B) Analog Offset % =
$$\left(\frac{-60 \text{Hz}}{60 \text{Hz}}\right) x \ 100 = (-100\%)$$

Note: The negative (-) value for the Analog Offset % shows that a negative offset is needed for P4.01.


C) Analog Gain % =
$$\left(\frac{60\text{Hz} - (-60\text{Hz})}{60\text{Hz}}\right)$$
 x 100 = $\left(\frac{200\%}{200\%}\right)$


D) Mid-point Frequency =
$$\left(\frac{60\text{Hz} - (-60\text{Hz})}{2}\right) + (-60\text{Hz}) = 0\text{Hz}$$

Parameter Settings

P4.01: 02 – Negative Input Offset Polarity P4.02: 100 – 100% Analog Input Offset P4.03: 200 – 200% Analog Input Gain

P4.04: 01 - Reverse Motion Enable

Example 4: Forward Run/Reverse Jog

This example shows an application in which the drive runs full-speed forward and jogs in reverse. The full scale of the potentiometer will be used.

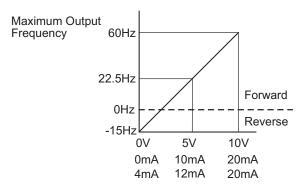
Note: When calculating the values for the Analog Input using reverse motion, the reverse frequency reference should be shown using a negative (-) number. Pay special attention to signs (+/-) for values representing reverse motion.

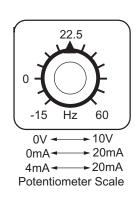
- Minimum Frequency Reference = -15Hz (reverse)
- Maximum Frequency Reference = 60Hz

Calculations

A) Max. Output Frequency =
$$\left(\frac{1750 \text{ RPM}}{1750 \text{ RPM}}\right) \times 60 \text{Hz} = 60 \text{Hz}$$

B) Analog Offset % =
$$\left(\frac{-15Hz}{60Hz}\right)x \ 100 = \left(-25\%\right)$$


Note: The negative (-) value for the Analog Offset % shows that a negative offset is needed for P4.01.


C) Analog Gain % =
$$\left(\frac{60\text{Hz} - (-15\text{Hz})}{60\text{Hz}}\right)$$
 x 100 = $\left(\frac{125\%}{125\%}\right)$

D) Mid-point Frequency =
$$\left(\frac{60\text{Hz} - (-15\text{Hz})}{2}\right)$$
 + (-15Hz) = (22.5Hz)

Parameter Settings

P4.01: 02 – Negative Input Offset Polarity P4.02: 25 – 25% Analog Input Offset P4.03: 125 – 125% Analog Input Gain P4.04: 01 – Reverse Motion Enable

Example 5: Reduced Analog Gain and Increased Maximum Output Frequency

This example illustrates two separate features:

- 1) limiting the Maximum Frequency Reference by reducing the Analog Input Gain
- 2) increasing the Maximum Output Frequency to run the motor faster than the Motor Base RPM

When the Analog Input is at its maximum value (10V or 20mA), the set-point frequency will be 50Hz. However, the Jog and Multi-speed settings can set the output as high as 70Hz.

- Minimum Frequency Reference = 0Hz
- Maximum Frequency Reference = 50 Hz
- Motor Maximum RPM = 2042 rpm

WARNING: The Motor Maximum RPM parameter (P0.04) should never exceed the maximum speed rating for the motor you are using. If this information is not readily available, consult your motor manufacturer.

Calculations

A) Max. Output Frequency =
$$\left(\frac{2042 \text{ RPM}}{1750 \text{ RPM}}\right) \times 60 \text{Hz} = 70 \text{Hz}$$

B) Analog Offset % =
$$\left(\frac{0Hz}{50Hz}\right)x 100 = 0\%$$

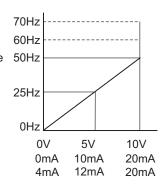
C) Analog Gain % =
$$\left(\frac{50\text{Hz} - (0\text{Hz})}{70\text{Hz}}\right)$$
x 100 = (71.4%)

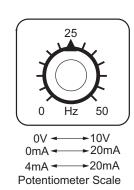
D) Mid-point Frequency =
$$\left(\frac{50\text{Hz} - (0\text{Hz})}{2}\right) + (0\text{Hz}) = 25\text{Hz}$$

Parameter Settings

P0.04: 2042 - Motor Maximum RPM

P4.01: 00 – Offset disabled


P4.02: 00 – 0% Analog Input Offset


P4.03: 71.4 – 71.4% Analog Input Gain

P4.04: 00 – Forward Motion Only

Results

Max. Output Frequency Motor Base Frequency Max. Frequency Reference

P4.05 Loss of ACI Signal (4-20mA)

Settings: 00 - Decelerate to 0Hz

Default Setting: 00

01 - Stop immediately and display "EF".

02 - Continue operation by the last frequency command

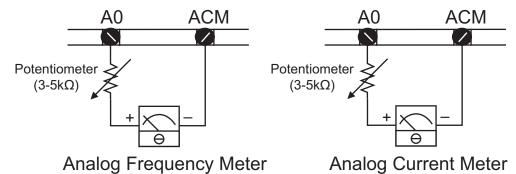
This parameter determines the operation of the drive when the ACI frequency command is lost.

P4.11 • Analog Output Signal

Range: 00 - Frequency Hz

Default Setting: 00

01 - Current A


02 - PV

This parameter selects either Output Frequency or current to be displayed using the 0 to 10V A0 output.

Range: 00 to 200% Default Setting: 100

This parameter sets the voltage range of the analog output signal, on output terminal A0.

- •The analog output voltage is directly proportional to the output frequency of the AC drive. With the factory setting of 100%, the Maximum Output Frequency of the AC drive corresponds to +10VDC analog voltage output. (The actual voltage is about
- •The analog output voltage is directly proportional to the output current of the AC drive. With the factory setting of 100%, the 2.5 times rated current of the AC drive corresponds to +10 VDC analog voltage output. (The actual voltage is about +10 VDC, and can be adjusted by P4.12).

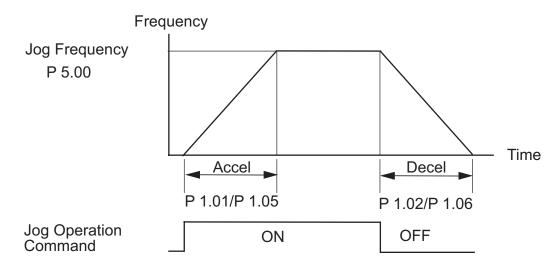
Note: Any type of voltmeter can be used. If the meter reads full scale at a voltage less than 10 volts, then P4.12 should be set by the following formula:

P4.12 = (meter full scale voltage \div 10)×100%

For Example: When using the meter with full scale of 5 Volts, adjust P4.12 to 50%.

+10VDC, and can be adjusted by P4.12)

Preset Parameters


P5.00

Range: 0.0 to 400.0 Hz

Default Setting: 6.0

The Jog Command is selected by a Multi-Function Input Terminal (P3.02 to P3.05) set to the Jog Function (09).

P5.01 Multi-Speed 1

P5.02 ♦ Multi-Speed 2

P5.03 ♦ Multi-Speed 3

P5.04 ♦ Multi-Speed 4

P5.05 Multi-Speed 5

P5.06 ♦ Multi-Speed 6

P5.07 ♦ Multi-Speed 7

Range for P5.01 - P5.07: 0.0 to 400.0 Hz

Default Setting: 0.0

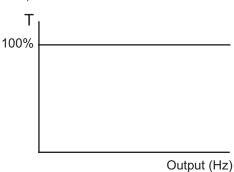
•The Multi-Function Input Terminals (refer to P3.01 to P3.05) are used to select one of the AC drive Multi-Step speeds. The speeds (frequencies) are determined by P5.01 to P5.07 shown above.

Multi-Speed Bits		d Bits	Speed Selection
Bit 3	Bit 2	Bit 1	Speed Selection
OFF	OFF	OFF	P4.00: Source of Frequency
OFF	OFF	ON	P5.01: Multi-Speed 1
OFF	ON	OFF	P5.02: Multi-Speed 2
OFF	ON	ON	P5.03: Multi-Speed 3
ON	OFF	OFF	P5.04: Multi-Speed 4
ON	OFF	ON	P5.05: Multi-Speed 5
ON	ON	OFF	P5.06: Multi-Speed 6
ON	ON	ON	P5.07: Multi-Speed 7

Note: When all multi-speed inputs are off, the AC drive reverts back to the Command Frequency (P4.00).

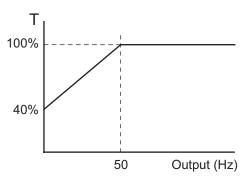
Protection Parameters

P6.00


Electronic Thermal Overload Relay

Default Setting: 00

Settings:


00 Constant Torque (inverter/vector duty motors)

Use this setting when using the drives with motors designed specifically for AC drive outputs and for running at low speeds with high currents. Motor currents will be 100% throughout the speed range, and can be up to 150% for one minute.

Variable Torque (fan cooled standard motors)

Use this setting when using the drives with motors which are NOT designed specifically for AC drive outputs. Motors with shaft mounted fans offer poor cooling at low speeds, therefore the output can be derated at lower output frequencies. This derated current is for protecting the motor at lower speeds.

The output current is derated as follows:

• I_{output} (%) = [f_{output} (Hz) x 1.2 %/Hz] + 40%

Example:

If the rated motor current is 10A, and the output frequency is 25Hz, the derating will be 70%, and the overload will be 10.5A (150%) for one minute.

- I_{output} (%) = [(25Hz) (1.2 %/Hz)] + 40% = 70%
- $10A \times 70\% = 7A$
- $7A \times 150\% = 10.5A$

02 Inactive

P6.01

Auto Restart After Fault

Range: 00 to 10 Default Setting: 00

• After fault occurs (allowable faults: over-current OC, over-voltage OV), the AC drive can be reset/restarted automatically up to 10 times. Setting this parameter to 0 will disable the reset/restart operation after any fault has occurred. When enabled, the AC drive will restart with speed search, which starts at the previous Frequency. To set the fault recovery time after a fault, please see (P6.13) base-block time for speed search.

P6.02

Momentary Power Loss

Default Setting: 00

Settings: 00 Stop operation after momentary power loss.

O1 Continue operation after momentary power loss, speed search from Speed Reference.

O2 Continue operation after momentary power

loss, speed search from Minimum Speed.

Note: Also refer to P6.30, Line Start Lockout.

Note: This parameter (P6.02) will work only if the Source of Operation (P3.00) is set

to something other than 00 (Operation determined by digital keypad).

P6.03

Reverse Operation Inhibit

Default Setting: 00

Settings: 00 Enable Reverse Operation

01 Disable Reverse Operation

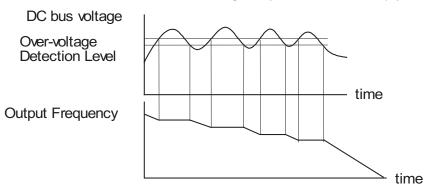
This parameter determines whether the AC Motor Drive can operate in the reverse direction.

P6.04

Auto Voltage Regulation

Default Setting: 00

Settings: 00 AVR enabled
01 AVR disabled
02 AVR disabled during decel
03 AVR disabled during Stop


- AVR function automatically regulates the AC drive output voltage to the Maximum Output Voltage (P0.00). For instance, if P0.00 is set at 200 VAC and the input voltage is at 200V to 264 VAC, then the Maximum Output Voltage will automatically be regulated to 200 VAC.
- Without AVR function, the Maximum Output Voltage may vary between 180V to 264 VAC, due to the input voltage varying between 180V to 264 VAC.
- Selecting program value 2 enables the AVR function and also disables the AVR function during deceleration. This offers a quicker deceleration.

P6.05

Over-Voltage Stall Prevention

Range: 00 Enable Over-voltage Stall Prevention 01 Disable Over-voltage Stall Prevention Default Setting: 00

• During deceleration, the AC drive DC bus voltage may exceed its Maximum Allowable Value due to motor regeneration. When this function is enabled, the AC drive will stop decelerating, and maintain a constant output frequency. The drive will resume deceleration when the voltage drops below the factory-preset value.

Note: With moderate inertial loads, over-voltage during deceleration will not occur. For applications with high inertia loads, the AC drive will automatically extend the deceleration time. If deceleration time is critical for the application, a dynamic braking resistor should be used. Set this parameter to 01 (disable) when using a dynamic braking resistor.

P6.06

Auto Adjustable Accel/Decel

Default Setting: 00

Settings: 00 Linear Accel/Decel

Auto Accel, Linear DecelLinear Accel, Auto Decel

03 Auto Accel/Decel

04 Auto Accel/Decel Stall Prevention

If the auto accel/decel is selected, the AC drive will accel/decel in the fastest and smoothest means possible by automatically adjusting the time of accel/decel.

This parameter provides five modes to choose:

- 00 Linear Acceleration and deceleration (operation by P1.01, P1.02 or P1.05, P1.06 acceleration/deceleration time).
- 01 Automatic acceleration, linear deceleration (Operation by automatic acceleration time, P1.02 or P1.06 deceleration time).
- 02 Linear acceleration and automatic deceleration (Operation by automatic acceleration time, P1.01 or P1.05 acceleration time).
- 03 Automatic acceleration, deceleration (Operation by AC drive auto adjustable control).
- 04 Auto acceleration, deceleration. The auto accel/decel will not be quicker than the settings for acceleration (P1.01 or P1.05) or deceleration (P1.02 or P1.06). The operation is specific to preventing a stall.

P6.07

Over-Torque Detection Mode

Default Setting: 00

Settings: 00 Disabled

01 Enabled during constant speed operation

02 Enabled during acceleration

P6.08

Over-Torque Detection Level

Range: 30 to 200%

Default Setting: 150

- A setting of 100% is proportional to the Rated Output Current of the drive.
- This parameter sets the Over-Torque Detection level in 1% increments. (The AC drive rated current is equal to 100%.)

P6.09

Over-Torque Detection Time

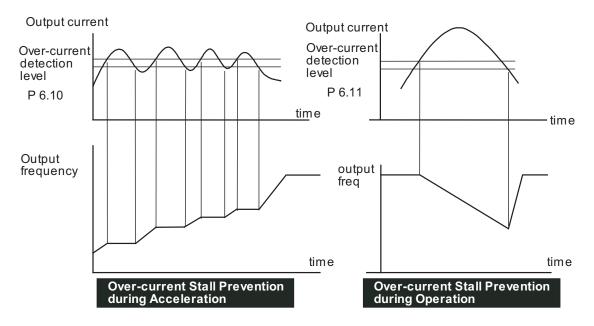
Range: 0.1 to 10.0

Default Setting: 0.1

This parameter sets the Over-Torque Detection Time in units of 0.1 seconds.

P6.10 Over-Current Stall Prevention During Acceleration

Range: 20 to 200% Default Setting: 150


A setting of 100% is equal to the Rated Output Current of the drive.

 Under certain conditions, the AC drive output current may increase abruptly, and exceed the value specified by P6.10 This is commonly caused by rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and maintain a constant output frequency. The AC drive will only resume acceleration when the current drops below the maximum value.

P6.11 Over-Current Stall Prevention During Operation

Range: 20 to 200% Default Setting: 150

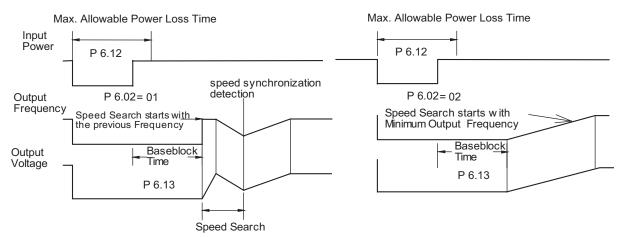
• During steady-state operation with motor load rapidly increasing, the AC drive output current may exceed the limit specified in P6.11. When this occurs, the output frequency will decrease to maintain a constant motor speed. The drive will accelerate to the steady-state output frequency only when the output current drops below the level specified by P6.11.

P6.12 Maximum Allowable Power Loss Time

Range: 0.3 to 5.0 sec Default Setting: 2.0

During a power loss, if the power loss time is less than the time defined by this
parameter, the AC drive will resume operation. If the Maximum Allowable
Power Loss Time is exceeded, the AC drive output is turned off.

P6.13 Base-Block Time for Speed Search


Range: 0.3 to 5.0 sec Default Setting: 0.5

- When a momentary power loss is detected, the AC drive turns off for a specified time interval determined by P6.13 before resuming operation. This time interval is called Base-Block. This parameter should be set to a value where the residual output voltage due to regeneration is nearly zero, before the drive resumes operation.
- This parameter also determines the searching time when performing external Base-Block and Fault Reset (P6.01)

P6.14 Maximum Speed Search Current Level

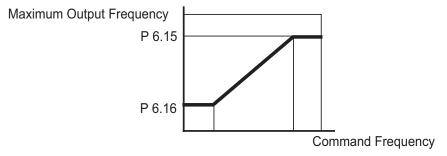
Range: 30 to 200% Default Setting: 150

• Following a power failure, the AC drive will start its speed search operation only if the output current is greater than the value determined by P6.14. When the output current is less than that of P6.14, the AC drive output frequency is at a "speed synchronization point". The drive will start to accelerate or decelerate back to the operating frequency at which it was running prior to the power failure.

P6.15 Upper Bound of Output Frequency

Range: 0.1 to 400 Hz

Default Setting: 400


- The Upper/Lower Bound of Output Frequency is to prevent operation error and machine damage.
- This parameter must be equal to or greater than the Lower Bound of Output Frequency (P6.16).
- If the Upper Bound of Output Frequency is 50 Hz and the Maximum Output Frequency is 60 Hz, then any Command Frequency above 50 Hz will generate a 50 Hz output from the drive.
- The Output Frequency is also limited by the Motor Maximum RPM (P0.04).

P6.16 Lower Bound of Output Frequency

Range: 0.0 to 400 Hz

Default Setting: 0.0

- The Upper/Lower Bound of Output Frequency is to prevent operation error and machine damage.
- This parameter must be equal to or less than the Upper Bound of Output Frequency (P6.15).
- If the Lower Bound of Output Frequency is 10 Hz, and the Minimum Output Frequency (P2.06) is set at 1.0 Hz, then any Command Frequency between 1-10 Hz will generate a 10 Hz output from the drive.
- The Upper/Lower Bound of Output Frequency is to prevent operation error and machine damage.

P6.30 Line Start Lockout

Default Setting: 00

Settings: 00 Enable Line Start Lockout

01 Disable Line Start Lockout

When this parameter is enabled, the AC Motor Drive will not start when powered up with a RUN command already applied. The drive must see the RUN command change from STOP to RUN before it will start.

When this parameter is disabled, the AC Motor Drive will start when powered up with a RUN command already applied.

P6.31	Present Fault Record
P6.32	Second Most Recent Fault Record
P6.33	Third Most Recent Fault Record
P6.34	Fourth Most Recent Fault Record
P6.35	Fifth Most Recent Fault Record
P6.36	Sixth Most Recent Fault Record

Default Setting: 00

Settings for	P6.31	- P6	.36:
--------------	-------	------	------

00	No Fault occurred
01	Over-current (oc)
02	Over-voltage (ov)
03	Overheat (oH)
04	Overload (oL)
05	Overload 1 (oL1)
06	Overload 2 (oL2)
07	External Fault (EF)
08	CPU failure 1 (CF1)
09	CPU failure 2 (CF2)
10	CPU failure 3 (CF3)
11	Hardware Protection Failure (HPF)
12	Over-current during accel (OCA)
13	Over-current during decel (OCd)
14	Over-current during steady state (OCn)
15	Ground fault or fuse failure (GFF)
16	Reserved
17	Input Power 3 phase loss
18	External Base Block (bb)
19	Auto Adjust Accel/decel failure (cFA)
20	Software protection code (co)

PID Parameters

P7.00 Input Terminal for PID Feedback

Default Setting: 00

Settings: 00 Inhibit PID operation.

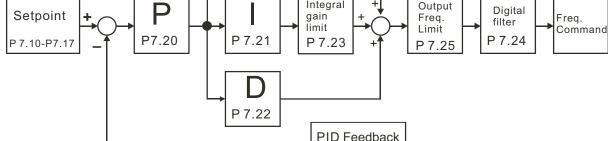
01 Forward-acting (heating loop) PID feedback,

PV from AVI (0 to +10V)

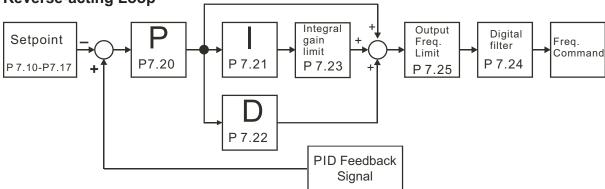
02 Forward-acting (heating loop) PID feedback,

PV from ACI (4 to 20mA)

03 Reverse-acting (cooling loop) PID feedback,


PV from AVI (0 to +10V)

04 Reverse-acting (cooling loop) PID feedback,


Signal

PV from ACI (4 to 20mA)

Forward-acting Loop Setpoint + Outp gain + Freq

Reverse-acting Loop

Note: Reverse-acting PID loops are available only for GS2 AC drives with firmware version 1.04 or higher.

Note: When using PID operation, the Source of Frequency parameter (P4.00) must be set to 00 or 01. If PID operation is disabled, the AC drive will operate using the Source of Frequency specified by P4.00.

P7.01 PV 100% Value

Range: 0.0 to 999 Default Setting: 100.0

This parameter should be set to the value corresponding to the 100% value of the process variable (PV). The setting for P7.01 cannot be less than any setting for P7.10 to P7.17.

Note: The setting for PV 100% value (P7.01) cannot be set less than any value set for P7.10 to P7.17. If you are unable to reduce P7.01 to the desired value, check parameters P7.10 to P7.17 and reduce these values accordingly.

P7.02 PID Setpoint Source

Settings: 00 - Keypad Default Setting: 00

01 - Serial Communications

P7.10 ♦ Keypad PID Setpoint

Range: 0.0 to 999 Default Setting: 0.0

Note: The settings for P7.10 to P7.17 cannot exceed the setting for P7.01.

P7.11 ♦ PID Multi-setpoint 1

Range: 0.0 to 999 Default Setting: 0.0

• The Multi-Function Input Terminals DI3 to DI6 are used to select one of the PID Multi-Setpoints. (For further explanation, refer to settings 03, 04, and 05 for P3.02 to P3.05.) The setpoints are determined by P7.11 to P7.17.

P7.12 ♦ PID Multi-setpoint 2

Range: 0.0 to 999 Default Setting: 0.0

• Refer to P7.11 for explanation.

P7.13 ♦ PID Multi-setpoint 3

Range: 0.0 to 999 Default Setting: 0.0

• Refer to P7.11 for explanation.

P7.14 ◆ PID Multi-setpoint 4

Range: 0.0 to 999 Default Setting: 0.0

• Refer to P7.11 for explanation.

P7.15 ◆ PID Multi-setpoint 5

Range: 0.0 to 999 Default Setting: 0.0

• Refer to P7.11 for explanation.

P7.16 ♦ PID Multi-setpoint 6

Range: 0.0 to 999 Default Setting: 0.0

• Refer to P7.11 for explanation.

P7.17 PID Multi-setpoint 7

Range: 0.0 to 999 Default Setting: 0.0

• Refer to P7.11 for explanation.

P7.20 ◆ Proportional Control (P)

Range: 0.0 to 10.0 Default Setting: 1.0

The first parameter of PID control is Proportional Control (P). For a given process, if the Proportional Value is set too low, the control action will be too sluggish. If the Proportional value is set too high, the control action will be unstable (erratic).

Set the Integral Control (I) and Derivative Control (D) to zero (0). Begin tuning the process with a low Proportional Value, and increase the Proportional value until the system goes unstable (erratic). When instability is reached, reduce the Proportional Value slightly until the system becomes stable (smaller values reduce system Gain). Stability can be tested by moving between two wide-spread setpoint values.

With 10% deviation and P=1, then P X 10% = Control Output. For example, if the speed of a motor is dragged down 10% due to a load increase, a corrective speed signal increase of 10% is generated. In a perfect world, this increase in speed command should bring the motor speed back to normal.

P7.21 • Integral Control (I)

Range: 0.00 to 100.0 sec (0.00 disable)

Default Setting: 1.00

Using only the Proportional Control, the corrective action may not increase fast enough or the setpoint may never be reached because of system losses. The Integral Control is used to generate additional corrective action.

When tuning, begin with a large Integral value and reduce the value until the system goes unstable (erratic). When instability is reached, increase the Integral value slightly until the system becomes stable and the desired setpoint value is reached.

P7.22 ♦ Derivative Control (D)

Range: 0.00 to 1.00 sec Default Setting: 0.00

If the control output is too sluggish after the Proportional Control (P) and Integral Control (I) values are set, Derivative Control (D) may be required. Begin with a high Derivative value and reduce the value to the point of system instability. Then increase the Derivative value until the control output regains stability. Stability can be tested by moving between two wide-spread setpoint values.

P7.23 Upper Bound for Integral Control

Range: 00 to 100% Default Setting: 100

• This parameter defines an upper boundary or limit for the integral gain (I) and therefore limits the Master Frequency. Use the formula below to calculate the Integral upper limit.

Max. Output Frequency = $\left(\frac{\text{Motor Max. RPM (P0-04)}}{\text{Motor Base RPM (P0-03)}}\right)$ x Base Frequency (P0-02)

• The formula is: Integral upper limit = (Maximum Output Frequency) X P7.23. This parameter can limit the Maximum Output Frequency

P7.24 Derivative Filter Time Constant

Range: 0.0 to 2.5 sec Default Setting: 0.0

• To avoid amplification of measured noise in the controller output, a derivative digital filter is inserted. This filter helps smooth oscillations. Larger values for P7.24 provide more smoothing.

P7.25 PID Output Frequency Limit

Range: 00 to 110% Default Setting: 100

• This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit = (Maximum Output Frequency) X P7.25. This parameter will limit the Maximum Output Frequency.

Max. Output Frequency = $\left(\frac{\text{Motor Max. RPM (P0-04)}}{\text{Motor Base RPM (P0-03)}}\right)$ x Base Frequency (P0-02)

P7.26 Feedback Signal Loss Detection Time

Range: 0.0 to 3600 sec Default Setting: 60

• This parameter defines how long the PID Feedback signal is lost before an error is generated. Setting this parameter to 0.0 disables the PID Feedback loss timer. When the feedback signal is lost, PID Feedback loss timer starts timing. When the timer value is greater than the setting value of P. 7.26, the PID Feedback Loss parameter (P7.27) is activated. Furthermore, the Keypad will display "FbE" means the feedback abnormality detected. When the signal is corrected, the warning message "FbE" will automatically be cleared.

P7.27 PID Feedback Loss Operation

Range: 00 - Warn and AC Drive Stop Default Setting: 00

01 - Warn and Continue Operation

- This parameter sets the operation of the drive when there is a loss of the PID feedback signal.
- This parameter only functions with 4-20ma for feedback loss operation.

Display Parameters

P8.00

User Defined Display Function

Default Setting: 00

Settings:	00	Output Frequency (Hz)
	01	Motor Speed (RPM)
	02	Output Frequency x P8.01
	03	Output Current (A)
	04	Motor Output Current (%)
	05	Output Voltage(V)
	06	DC Bus Voltage (V)
	07	PID Setpoint
	80	PID Feedback (PV)
	09	Frequency Setpoint

P8.01

◆ Frequency Scale Factor

Range: 0.01 to 160.0

Default Setting: 1.0

This parameter can be used to multiply the display unit by a scaling factor so that the display will represent some other user desired unit. For example, the user may want to scale the drive display to represent ft/min for a motor that is driving a conveyor.

The coefficient K determines the multiplying factor for the user-defined unit.

• The display value is calculated as follows:

Display value = output frequency x K

• The display window is only capable of showing four digits, but P8.01 can be used to create larger numbers. The display window uses decimal points to signify numbers up to five digits as explained below:

DISPLAY	NUMBER REPRESENTED
9999	The absence of a decimal point indicates a four digit integer.
999.9	A single decimal point between the middle and the right-most numbers is a true decimal point; it separates ones and tenths as in "300.5 (three hundred and one-half).
9999.	A single decimal point after the right-most number is not a true decimal point; instead it indicates that a zero follows the right-most numbers. For example, the number 12340 would be displayed as "1234.".

Communication Parameters

P9.00 Communication Address

Range: 01 to 254 Default Setting: 01

• If the AC drive is controlled by serial communication, the communication address must be set via this parameter.

P9.01 Transmission Speed

Range: 00 to 03 Default Setting: 01

Setting 00: 4800 baud data transmission speed

01: 9600 baud data transmission speed02: 19200 baud data transmission speed03: 38400 baud data transmission speed

• Users can set parameters and control the operation of the AC drive via the RS-485 serial interface of a personal computer. This parameter is used to set the transmission speed between the computer and AC drive.

P9.02 Communication Protocol

Default Setting: 00

Settings:	00	MODBUS ASCII mode. <7 data bits, no parity, 2 stop bits>
	01	MODBUS ASCII mode <7 data bits, even parity, 1 stop bit>
	02	MODBUS ASCII mode <7 data bits, odd parity, 1 stop bit>
	03	MODBUS RTU mode <8 data bits, no parity, 2 stop bits>
	04	MODBUS RTU mode <8 data bits, even parity, 1 stop bit>
	05	MODBUS RTU mode <8 data bits, odd parity, 1 stop bit>

P9.03 Transmission Fault Treatment

Default Setting: 00

Settings: 00 - Display fault and continue operating

01 - Display fault and RAMP to stop02 - Display fault and COAST to stop

03 - No fault displayed and continue operating

P9.04 Time Out Detection

Range: 00 - Disable Default Setting: 00

01 - Enable

•This parameter is used for ASCII mode. When this parameter is set to 01, it indicates that the over-time detection is enabled and the time slot between each character cannot exceed 500 ms.

P9.05 Time Out Duration

Range: 0.1 to 60.0 seconds Default Setting: 0.5

P9.07 ♦ Parameter Lock

Default Setting: 00

Settings: 00 All parameters can be set and read

O1 All parameters are read only

P9.08 Restore to Default

Settings: 0 or 99 Default Setting: 00

•• Setting 99 restores all parameters to factory defaults. ••

P9.11 ♦ Block Transfer Parameter 1

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

The sequential block transfer parameters (P9.11 through P9.25) allow you to "group" various miscellaneous non-sequential parameters, so that only one PLC programming write instruction is required to update those parameters, instead of three separate write instructions.

• Example:

Writing directly to three non-sequential parameters P1.00, P1.02, and P1.04 requires three separate write instructions from the PLC. However, those drive parameters can be updated with only one PLC write instruction to the sequential transfer blocks P9.11 through P9.13; if P9.11 is set to P1.00, P9.12 is set to P1.02, and P9.13 is set to P1.04.

P9.12 ♦ Block Transfer Parameter 2

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.13 ♦ Block Transfer Parameter 3

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.15 ♦ Block Transfer Parameter 5

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.16 ♦ Block Transfer Parameter 6

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.17 ♦ Block Transfer Parameter 7

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.19 ♦ Block Transfer Parameter 9

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.20 ♦ Block Transfer Parameter 10

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.21 ♦ Block Transfer Parameter 11

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.22 ♦ Block Transfer Parameter 12

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.23 ♦ Block Transfer Parameter 13

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.24 ♦ Block Transfer Parameter 14

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.25 ♦ Block Transfer Parameter 15

Range: P0.00 to P8.01, P9.99 Default Setting: P9.99

P9.26 ♦ Serial Comm Speed Reference

Range: 0.0 to 400.0 Hz Default Setting: 60.0

• This parameter is used to set the Frequency Command when the AC drive is controlled by communication interface.

Note: In order for this parameter to function, the Source of Frequency Command (P4.00) must be set to 05.

P9.27 ◆Serial Comm RUN Command

Range: 00 - Stop Default Setting: 00 01 - Run

P9.28 ♦ Serial Comm Direction Command

Range: 00 - Forward Default Setting: 00

01 - Reverse

Chapter 4: AC Drive Parameters

P9.29 ♦ Serial Comm External Fault

Range: 00 - No action Default Setting: 00

01 - External fault

P9.30 ♦ Serial Comm Fault Reset

Range: 00 - No action Default Setting: 00

01 - Fault Reset

P9.31 ♦ Serial Comm JOG Command

Range: 00 - Stop Default Setting: 00

01 - Jog

P9.39 Firmware Version

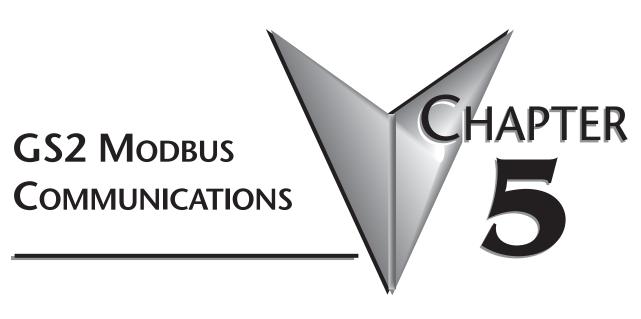
Range: #.## Default Setting: #.##

P9.41 GS Series Number

Default Setting: ##

Settings: 01 GS1

02 GS2


03 GS3

04 GS4

P9.42 Manufacturer Model Information

Default Setting: ##

Settings:	00	GS2-20P5 (230V 1 ph/3ph 0.5hp)
	01	GS2-21P0 (230V 1 ph/3ph 1hp)
	02	GS2-22P0 (230V 1ph/3ph 2hp)
	03	GS2-23P0 (230V 1ph/3ph 3hp)
	04	GS2-25P0 (230V 3ph 5hp)
	05	GS2-27P5 (230V 3ph 7.5hp)
	06	Reserved
	07	GS2-41P0 (460V 3ph 1hp)
	08	GS2-42P0 (460V 3ph 2hp)
	09	GS2-43P0 (460V 3ph 3hp)
	10	GS2-45P0 (460V 3ph 5hp)
	11	GS2-47P0 (460V 3ph 7.5 hp)
	12	GS2-4010 (460V 3ph 10hp)
	13	GS2-10P2 (115V 1ph 0.25hp)
	14	GS2-10P5 (115V 1ph 0.5hp)
	15	GS2-11P0 (115V 1ph 1hp)
	16	Reserved
	17	Reserved
	18	Reserved
	19	Reserved
	20	Reserved
	21	GS2-51P0 (575V 3ph 1hp)
	22	GS2-52P0 (575V 3ph 2hp)
	23	GS2-53P0 (575V 3ph 3hp)
	24	GS2-55P0 (575V 3ph 5hp)
	25	GS2-57P5 (575V 3ph 7.5hp)
	26	GS2-5010 (575V 3ph 10hp)

In This Chapter...

Communication Parameters Summary 5–2
GS2 Parameter Memory Addresses5-4
GS2 Status Addresses
Communicating with <i>Direct</i> Logic PLCs5–12
Step 1: Choose the Appropriate CPU
Step 2: Make the Connections5–12
Step 3: Set AC Drive Parameters5–14
Step 4: Configure the <i>Direct</i> LOGIC CPUs5–14
DirectLOGIC Modbus Port Configuration5–15
DirectLOGIC Modbus Ladder Programming5–16
Communicating with Third-party Devices5-30
Data Format5–31
Communication Protocol

Communication Parameters Summary

A summary of the GS2 Communications Parameters is listed below. For a complete listing of the GS2 Parameter, refer to Chapter 4.

Communications Parameters				
GS2 Parameter	Description	Range	Default	
P 9.00	Communication Address	01 to 254	01	
P 9.01	Transmission Speed	00: 4800 baud 01: 9600 baud 02: 19200 baud 03: 38400 baud	01	
P 9.02	Communication Protocol	00: Modbus ASCII mode 7 data bits,no parity,2 stop bits 01: Modbus ASCII mode 7 data bits,even parity,1 stop bit 02: Modbus ASCII mode 7 data bits,odd parity,1 stop bit 03: Modbus RTU mode 8 data bits,no parity,2 stop bits 04: Modbus RTU mode 8 data bits,even parity,1 stop bit 05: Modbus RTU mode 8 data bits,odd parity,1 stop bit	00	
P 9.03	Transmission Fault Treatment	00: Display fault and continue operating01: Display fault and RAMP to stop02: Display fault and COAST to stop03: No fault displayed and continue operating	00	
P 9.04	Time Out Detection	00: Disable 01: Enable	00	
P 9.05	Time Out Duration	0.1 to 60.0 seconds	0.5	
♦ P 9.07	Parameter Lock	00: All parameters can be set and read 01: All parameters are read-only	00	
P 9.08	Restore to Default	99: Restores all parameters to factory defaults	00	
♦ P 9.11	Block Transfer Parameter 1	P0.00 to P8.01, P9.99	P 9.99	
♦ P 9.12	Block Transfer Parameter 2	P0.00 to P8.01, P9.99	P 9.99	
♦ P 9.13	Block Transfer Parameter 3	P0.00 to P8.01, P9.99	P 9.99	
♦ P 9.14	Block Transfer Parameter 4	P0.00 to P8.01, P9.99	P 9.99	
♦ P 9.15	Block Transfer Parameter 5	P0.00 to P8.01, P9.99	P 9.99	
♦ P 9.16	Block Transfer Parameter 6	P0.00 to P8.01, P9.99	P 9.99	
♦ P 9.17	Block Transfer Parameter 7	P0.00 to P8.01, P9.99	P 9.99	
◆ Paramete	er can be set during RUN M	lode.	•	

GS2			
Parameter	Description	Range	Defaul
P 9.18	Block Transfer Parameter 8	P0.00 to P8.01, P9.99	P 9.99
P 9.19	Block Transfer Parameter 9	P0.00 to P8.01, P9.99	P 9.99
P 9.20	Block Transfer Parameter 10	P0.00 to P8.01, P9.99	P 9.99
P 9.21	Block Transfer Parameter 11	P0.00 to P8.01, P9.99	P 9.99
P 9.22	Block Transfer Parameter 12	P0.00 to P8.01, P9.99	P 9.99
P 9.23	Block Transfer Parameter 13	P0.00 to P8.01, P9.99	P 9.99
P 9.24	Block Transfer Parameter 14	P0.00 to P8.01, P9.99	P 9.99
P 9.25	Block Transfer Parameter 15	P0.00 to P8.01, P9.99	P 9.99
P 9.26	Serial Comm Speed Reference	0.0 to 400.0 Hz	60.0
P 9.27	Serial Comm RUN Command	00: Stop 01: Run	00
P 9.28	Serial Comm Direction Command	00: Forward 01: Reverse	00
P 9.29	Serial Comm External Fault	00: No fault 01: External fault	00
P 9.30	Serial Comm Fault Reset	00: No action 01: Fault Reset	
P 9.31	Serial Comm JOG Command	00: Stop 01: Jog	00
P 9.39	Firmware Version	#.##	#.##
P 9.41	GS Series Number	01: GS1 02: GS2 03: GS3	##
P 9.42	Manufacturer Model Information	00: GS2-20P5 (230V 1ph/3ph 0.5hp) 01: GS2-21P0 (230V 1ph/3ph 1hp) 02: GS2-22P0 (230V 1ph/3ph 2hp) 03: GS2-23P0 (230V 1ph/3ph 3hp) 04: GS2-25P0 (230V 3ph 5hp) 05: GS2-27P5 (230V 3ph 7.5hp) 06: Reserved 07: GS2-41P0 (460V 3ph 1hp) 08: GS2-42P0 (460V 3ph 3hp) 10: GS2-43P0 (460V 3ph 5hp) 11: GS2-45P0 (460V 3ph 5hp) 11: GS2-47P5 (460V 3ph 7.5hp) 12: GS2-4010 (460V 3ph 10hp) 13: GS2-10P2 (115V 1ph 0.25hp) 14: GS2-10P5 (115V 1ph 0.5hp) 15: GS2-11P0 (115V 1ph 1hp) 16~20: Reserved 21: GS2-51P0 (575V 3ph 1hp) 22: GS2-52P0 (575V 3ph 3hp) 24: GS2-55P0 (575V 3ph 5hp) 25: GS2-57P5 (575V 3ph 7.5hp) 26: GS2-5010 (575V 3ph 10hp)	##

5–3

GS2 Parameter Memory Addresses

GS2 Parameter	Parameter Memory Description	Hexadecimal	Modbus Decimal	Octal
	Motor Parameter A	\ddresses		
P 0.00	Motor Nameplate Voltage	0000	40001	0
P 0.01	Motor Nameplate Amps	0001	40002	1
P 0.02	Motor Base Frequency	0002	40003	2
P 0.03	Motor Base RPM	0003	40004	3
P 0.04	Motor Maximum RPM	0004	40005	4
	Ramp Parameter A			
P 1.00	Stop Methods	0100	40257	400
▶ P 1.01	Acceleration Time 1	0101	40258	401
P 1.02	Deceleration Time 1	0102	40259	402
P 1.03	Accel S-curve	0103	40260	403
P 1.04	Decel S-curve	0104	40261	404
P 1.05	Acceleration Time 2	0105	40262	405
P 1.06	Deceleration Time 2	0106	40263	406
P 1.07	Select method to use 2nd Accel/Decel	0107	40264	407
P 1.08	Accel 1 to Accel 2 frequency transition	0108	40265	410
P 1.09	Decel 2 to Decel 1 frequency transition	0109	40266	411
P 1.10	Skip Frequency 1	010A	40267	412
P 1.11	Skip Frequency 2	010B	40268	413
P 1.12	Skip Frequency 3	010C	40269	414
P 1.17	Skip Frequency Band	0111	40274	421
P 1.18	DC Injection Current Level	0112	40275	422
P 1.20	DC Injection during Start-up	0114	40277	424
P 1.21	DC Injection during Stopping	0115	40278	425
P 1.22	Start-point for DC Injection	0116	40279	426
	Volts/Hertz Paramete			
P 2.00	Volts/Hertz Settings	0200	40513	1000
P 2.01	Slip Compensation	0201	40514	1001
P 2.02	Auto-torque Boost	0202	40515	1002
P 2.04	Mid-point Frequency	0204	40517	1004
P 2.05	Mid-point Voltage	0205	40518	1005
P 2.06	Min. Output Frequency	0206	40519	1006
P 2.07	Min. Output Voltage	0207	40520	1007
P 2.08	PWM Carrier Frequency	0208	40521	1010

GS2	Description	Hexadecimal	Modbus	0-4-1
Parameter			Decimal	Octal
	Digital Parameter	Addresses		
P 3.00	Source of Operation Command	0300	40769	1400
P 3.01	Multi-function Input Terminals (DI1 - DI2)	0301	40770	1401
P 3.02	Multi-function Input (DI3)	0302	40771	1402
P 3.03	Multi-function Input (DI4)	0303	40772	1403
P 3.04	Multi-function Input (DI5)	0304	40773	1404
P 3.05	Multi-function Input (DI6)	0305	40774	1405
P 3.11	Multi-Function Output Terminal 1	030B	40780	1413
P 3.12	Multi-Function Output Terminal 2	030C	40781	1414
♦ P 3.16	Desired Frequency	0310	40785	1420
◆ P 3.17	Desired Current	0311	40786	1421
♦ P 3.18	PID Deviation Level	0312	40787	1422
♦ P 3.19	PID Deviation Time	0313	40788	1423
	Analog Parameter	Addresses		
P 4.00 Source of Frequency Command		0400	41025	2000
P 4.01	Analog Input Offset Polarity	0401	41026	2001
◆ P 4.02	Analog Input Offset	0402	41027	2002
♦ P 4.03	Analog Input Gain	0403	41028	2003
P 4.04	Analog Input Reverse Motion Enable	0404	41029	2004
P 4.05	Loss of ACI Signal (4-20mA)	0405	41030	2005
♦ P 4.11	Analog Output Signal	040B	41036	2013
◆ P 4.12	Analog Output Gain	040C	41037	2014
	Presets Parameter	Addresses		
◆ P 5.00	Jog	0500	41281	2400
◆ P 5.01	Multi-Speed 1	0501	41282	2401
♦ P 5.02	Multi-Speed 2	0502	41283	2402
♦ P 5.03	Multi-Speed 3	0503	41284	2403
◆ P 5.04	Multi-Speed 4	0504	41285	2404
♦ P 5.05	Multi-Speed 5	0505	41286	2405
◆ P 5.06	Multi-Speed 6	0506	41287	2406
♦ P 5.07	Multi-Speed 7	0507	41288	2407

Parameter Memory Addresses (continued)							
GS2 Parameter	Description	Hexadecimal	Modbus Decimal	Octal			
Protection Parameter Addresses							
P 6.00 Electronic Thermal Overload Relay		0600	41537	3000			
P 6.01	Auto Restart after Fault	0601	41538	3001			
P 6.02	Momentary Power Loss	0602	41539	3002			
P 6.03	Reverse Operation Inhibit	0603	41540	3003			
P 6.04	Auto Voltage Regulation	0604	41541	3004			
P 6.05	Over-VoltageTrip Protection	0605	41542	3005			
P 6.06	Auto Adjustable Accel/Decel	0606	41543	3006			
P 6.07	Over-Torque Detection Mode	0607	41544	3007			
P 6.08	Over-Torque Detection Level	0608	41545	3010			
P 6.09	P 6.09 Over-Torque Detection Time		41546	3011			
P 6.10	P 6.10 Over-Current Stall Prevention during Acceleration		41547	3012			
P 6.11	P 6.11 Over-Current Stall Prevention during Operation		41548	3013			
P 6.12	Maximum Allowable Power Loss Time	060C	41549	3014			
P 6.13	Base-Block Time for Speed Search	060D	41550	3015			
P 6.14	Maximum Speed Search Current Level	060E	41551	3016			
P 6.15	Upper Bound of Output Frequency	060F	41552	3017			
P 6.16	Lower Bound of Output Frequency	0610	41553	3020			
P 6.31	Present Fault Record	061F	41568	3037			
P 6.32	Second Most Recent Fault Record	0620	41569	3040			
P 6.33	Third Most Recent Fault Record	0621	41570	3041			
P 6.34	Fourth Most Recent Fault Record	0622	41571	3042			
P 6.35	Fifth Most Recent Fault Record	0623	41572	3043			
P 6.36	Sixth Most Recent Fault Record	0624	41573	3044			
Paramete	r can be set during RUN Mode.						

Parameter Memory Addresses (continued)							
GS2 Parameter Description		Hexadecimal	Modbus Decimal	Octal			
	PID Parameter Addresses						
P 7.00	Input Terminal for PID Feedback	0700	41793	3400			
P 7.01	PV 100% Value	0701	41794	3401			
P 7.02	PID Setpoint Source	0702	41795	3402			
♦ P 7.10	Keypad PID Setpoint	070A	41803	3412			
♦ P 7.11	PID Multi-setpoint 1	070B	41804	3413			
♦ P 7.12	PID Multi-setpoint 2	070C	41805	3414			
♦ P 7.13	PID Multi-setpoint 3	070D	41806	3415			
♦ P 7.14	PID Multi-setpoint 4	070E	41807	3416			
◆ P 7.15	PID Multi-setpoint 5	070F	41808	3417			
♦ P 7.16	P 7.16 PID Multi-setpoint 6		41809	3420			
♦ P 7.17	PID Multi-setpoint 7	0711	41810	3421			
♦ P 7.20	Proportional Control	0714	41813	3424			
♦ P 7.21	Integral Control	0715	41814	3425			
♦ P 7.22	Derivative Control	0716	41815	3426			
P 7.23	Upper Bound for Integral Control	0717	41816	3427			
P 7.24	Derivative Filter Time Constant	0718	41817	3430			
P 7.25	PID Output Frequency Limit	0719	41818	3431			
P 7.26	Feedback Signal Detection Time	071A	41819	3432			
P 7.27	PID Feedback Loss	071B	41820	3433			
	Display Parameter	Addresses					
◆ P 8.00	User Defined Display Function	0800	42049	4000			
◆ P 8.01 Frequency Scale Factor 0801 42050 4							
Parameter	can be set during RUN Mode.			-			

GS2 Parameter	Description	Hexadecimal	Modbus Decimal	Octal			
Communications Parameter Addresses							
P 9.00	Communication Address	0900	42305	4400			
P 9.01	Transmission Speed	0901	42306	4401			
P 9.02	Communication Protocol	0902	42307	4402			
P 9.03	Transmission Fault Treatment	0903	42308	4403			
P 9.04	Time Out Detection	0904	42309	4404			
P 9.05	Time Out Duration	0905	42310	4405			
♦ P 9.07	Parameter Lock	0907	42312	4407			
P 9.08	Restore to Default	0908	42313	4410			
♦ P 9.11	Block Transfer Parameter 1	090B	42316	4413			
♦ P 9.12	Block Transfer Parameter 2	090C	42317	4414			
♦ P 9.13	Block Transfer Parameter 3	090D	42318	4415			
♦ P 9.14	Block Transfer Parameter 4	090E	42319	4416			
♦ P 9.15	Block Transfer Parameter 5	090F	42320	4417			
♦ P 9.16	Block Transfer Parameter 6	0910	42321	4420			
◆ P 9.17	Block Transfer Parameter 7	0911	42322	4421			
♦ P 9.18	Block Transfer Parameter 8	0912	42323	4422			
♦ P 9.19	Block Transfer Parameter 9	0913	42324	4423			
♦ P 9.20	Block Transfer Parameter 10	0914	42325	4424			
♦ P 9.21	Block Transfer Parameter 11	0915	42326	4425			
♦ P 9.22	Block Transfer Parameter 12	0916	42327	4426			
♦ P 9.23	Block Transfer Parameter 13	0917	42328	4427			
♦ P 9.24	Block Transfer Parameter 14	0918	42329	4430			
♦ P 9.25	Block Transfer Parameter 15	0919	42330	4431			
♦ P 9.26	Serial Comm Speed Reference	091A	42331	4432			
♦ P 9.27	Serial Comm RUN Command	091B	42332	4433			
♦ P 9.28	Serial Comm Direction Command	091C	42333	4434			
♦ P 9.29	Serial Comm External Fault	091D	42334	4435			
◆ P 9.30	Serial Comm Fault Reset	091E	42335	4436			
◆ P 9.31	Serial Comm JOG Command	091F	42336	4437			
P 9.41	GS Series Number	0929	42346	4451			
P 9.42	Manufacturer Model Information	092A	42347	4452			

GS2 Status Addresses

The GS2 Series AC drive has status memory addresses that are used to monitor the AC drive. The status addresses and value definitions are listed below.

Status Addresses (Read Only)

GS2 Status Addresses				
Description	Hexadecimal	Modbus Decimal	Octal	
Status Monitor 1	2100	48449	20400	
Status Monitor 2	2101	48450	20401	
Frequency Command F	2102	48451	20402	
Output Frequency H	2103	48452	20403	
Output Current A	2104	48453	20404	
DC Bus Voltage d	2105	48454	20405	
Output Voltage U	2106	48455	20406	
Motor RPM	2107	48456	20407	
Scale Frequency (Low Word)	2108	48457	20410	
Scale Frequency (High Word)	2109	48458	20411	
Power Factor Angle	210A	48459	20412	
% Load	210B	48460	20413	
Firmware Version	2110	48465	20420	

Status Monitor 1	1	h2100

Error Codes:

00:	No	fault	occurred
-----	----	-------	----------

01: Over-current(oc)

02: Over-voltage(ov)

03: Overheat (oH)

04: Overload (oL)

05: Overload 1 (oL1)

06: Overload 2 (oL2)

07: External Fault (EF)

08: CPU failure 1 (cF1)

09: CPU failure 2 (cF2)

10: CPU failure 3 (cF3)

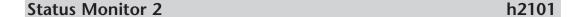
11: Hardware Protection Failure (HPF)

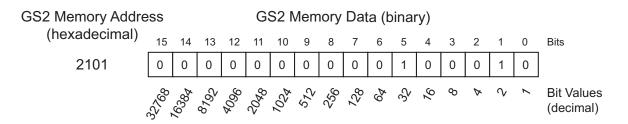
12: Over-current during accel (ocA)

13: Over-current during decel (ocd)

14: Over-current during steady state (ocn)

15: Ground fault or fuse failure (GFF)


16: Low voltage (Lv)


17: Input power 3-phase loss (PHL)

18: External Base-Block (bb)

19: Auto adjust accel/decel failure (cFA)

20: Software protection code (codE)

	Status Monitor 2 - Memory Address h2101				
Address Bit(s)	Bit(s) Value Binary (Decimal)	AC Drive Status			
	00 (0)	Drive operation stopped (STOP)			
0 and 1	01 (1)	Run to Stop transition			
U and i	10 (2)	Standby			
	11 (3)	Drive operation running (RUN)			
2	1 (4)	OG active			
	00 (0)	Rotational direction forward (FWD)			
3 and 4	01 (8)	REV to FWD transition			
3 4110 4	10 (16)	FWD to REV transition			
	11 (24)	Rotational direction reverse (REV)			
5	1 (32)	Source of frequency determined by serial comm interface (P4.00 = 5)			
6	1 (64)	Source of frequency determined by AI terminal (P4.00 = 2, 3, or 4)			
7	1 (128)	Source of operation determined by serial comm interface ($P3.00 = 3$ or 4			
8	1 (256)	Parameters have been locked (9-07 = 1)			
9 to 15	to 15 N/A Reserved				

Frequency Command F (XXX.X)

h2102

Status location for the frequency setting of the AC drive.

Output Frequency H (XXX.X)

h2103

Status location for the actual operating frequency present at the T1, T2, and T3 terminal.

Output Current A

h2104

Status location for the output current present at the T1, T2, and T3 terminals.

DC-BUS Voltage d (XXX.X)

h2105

Status location for the DC Bus Voltage.

Output Voltage U (XXX.X)

h2106

Status location for the output voltage present at the T1, T2, and T3 terminals.

Motor RPM h2107

Status location for the present estimated speed of the motor.

Scale Frequency (Low word)

h2108

Status location for result of output frequency x P 8.01 (low word).

Scale Frequency (High word)

h2109

Status location for result of output frequency x P 8.01 (high word).

Power Factor Angle

h210A

Status location for the power factor angle.

% Load h210B

Status location for the amount of load on the AC drive. (Output Current \div Drive Rated Current) x 100.

Firmware Version h2110

Status location for the firmware version of the AC drive.

Communicating with DirectLOGIC PLCs

The following steps explain how to connect to and communicate with the GS2 Series AC drives using *Direct*LOGIC PLCs.

Step 1: Choose the Appropriate CPU.

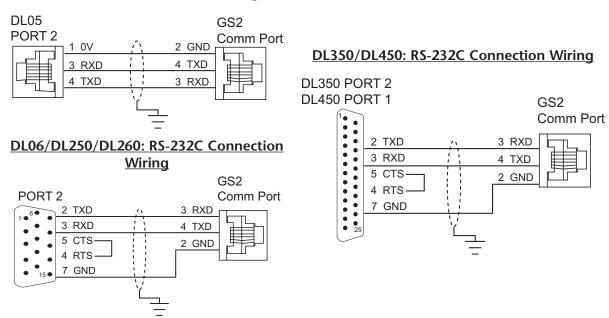
The GS2 Series AC drives will communicate with the following *Direct*LOGIC CPUs using Modbus communications:

- DL05
- DL06
- DL250(-1)

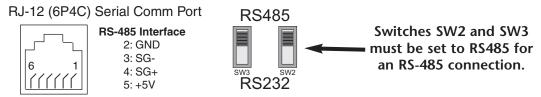
- DL260
- DL350
- DL450

Step 2: Make the Connections

First you must decide what type of interface will work best for your application. The GS2 Comm Port can accommodate an RS-232C or an RS-485 connection.

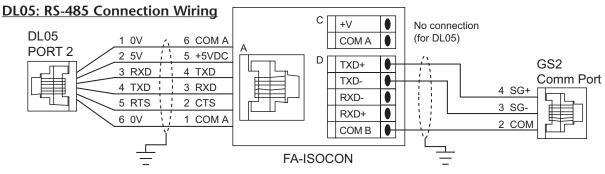

RS-232C

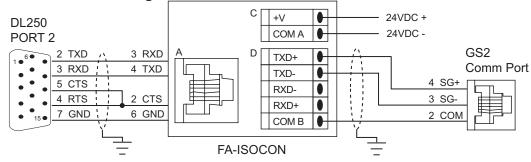
An RS-232C connection is somewhat limited. The maximum RS-232C network cable length is 15 meters (50 feet). In addition, using the RS-232C interface will allow you to connect an AC drive to only one PLC. For an RS-232C connection, set the GS2 DIP switches SW2 and SW3 to RS232.

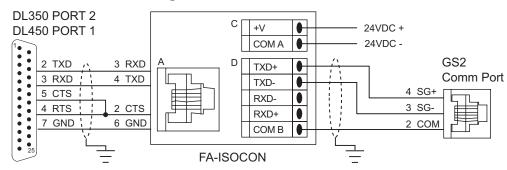

Use the following wiring diagrams to connect your *Direct*LOGIC PLC to a GS2 Series AC drive with an RS-232C interface:

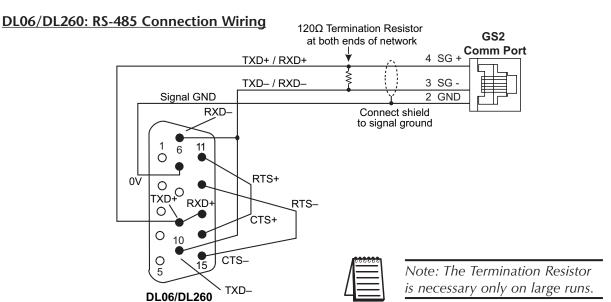
DL05: RS-232C Connection Wiring

RS-232C to RS-485 Conversion


An RS-485 network cable can span up to 1000 meters (4000 feet). However, most *Direct*LOGIC PLCs require an FA-ISOCON (RS-232C to RS-422/485 network adapter) in order to make this type of connection. For an RS-485 connection, set the GS2 DIP switches SW2 and SW3 to RS485.


Use the following wiring diagrams to connect your *Direct*LOGIC PLC to a GS2 Series AC drive with an RS-485 interface:


Note: If an FA-ISOCON module is used in your connection, set the module dipswitches S21 = ON; S22 - S27 = OFF; TERMINATE, BIAS, and DPX = ON. Refer to FA-ISOCON manual for more detailed information.



DL350/DL450: RS-485 Connection Wiring

RS-485

Step 3: Set AC Drive Parameters

CPU Port 2

The following parameters need to be set as shown in order to communicate properly.

P 3.00: 03 or 04 – Operation Determined by RS-232C/RS-485 interface. Keypad STOP is enabled (03) or disabled (04).

P 4.00: 05 – Frequency determined by RS-232/RS-485 communication interface

P 9.00: xx – Communication address 1-254 (unique for each device, see P 9.00)

P 9.01: 01 – 9600 baud data transmission speed

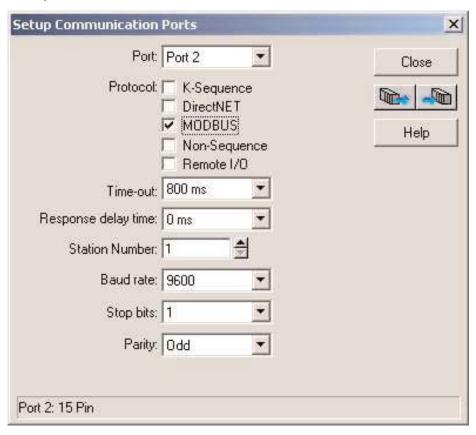
P 9.02: 05 – Modbus RTU mode <8 data bits, odd parity, 1 stop bit>

Note: The previous list of parameter settings is the minimum required to communicate with a **Direct**LOGIC PLC. There may be other parameters that need to be set to meet the needs of your application.

Step 4: Configure the DirectLOGIC CPUs

The *Direct*LOGIC CPUs must be configured to communicate with the GS2 Series AC drives. This set up includes setting up the communication port and adding instructions to your logic program.

The set up for all of the *Direct*LOGIC CPUs is very similar. However, there may be some subtle differences between CPUs. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.



Note: For instructions on Modbus Configuration for your specific CPU, refer to the appropriate CPU User Manual.

DirectLOGIC Modbus Port Configuration

The following configuration example is specific to the DL250(-1) CPU. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.

- In *Direct*SOFT, choose the PLC menu, then Setup, then "Secondary Comm Port".
- From the **Port** list box, choose "Port 2".
- For the protocol, select "Modbus".

- In the **Timeout** list box, select "800 ms".
- **Response Delay Time** should be "0 ms".
- The **Station Number** should be set to "1" to make the DL250(-1) CPU a Modbus master.

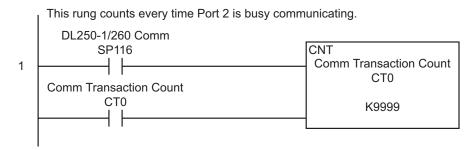
Note: The DL250(-1) network instructions used in Master mode will access only slaves 1 to 90. Each slave must have a unique number.

- The **Baud Rate** should be set at "9600".
- In the **Stop Bits** list box, choose "1".
- In the **Parity** list box, choose "Odd".

The set up for all of the *Direct*LOGIC CPUs is very similar. However, there may be some subtle differences between CPUs. Refer to the appropriate CPU User Manual for the specifics on your *Direct*LOGIC CPU.

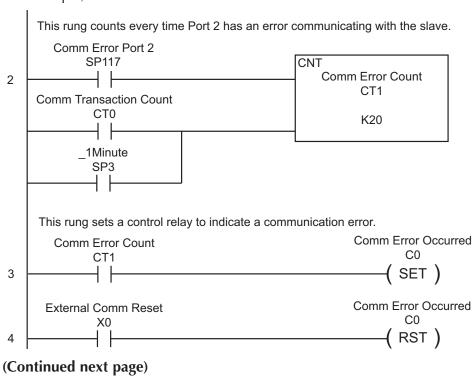
The following ladder program shows some examples of how to control the GS2 AC drive through Modbus RTU. The drive should be setup and tested for communications before it is connected to a load.

WARNING: A drive should never be connected to a load until any applicable communication programs have been proven.


Note: This program is for illustration purposes only, and is not intended for a true application.

In many drive applications, electromagnetic interference can sometimes cause frequent, short duration communication errors. Unless the application environment is perfect, an occasional communication error will occur. In order to distinguish between these non-fatal transients and a genuine communication failure, you may want to use the instructions as shown in Rungs 1 through 4.

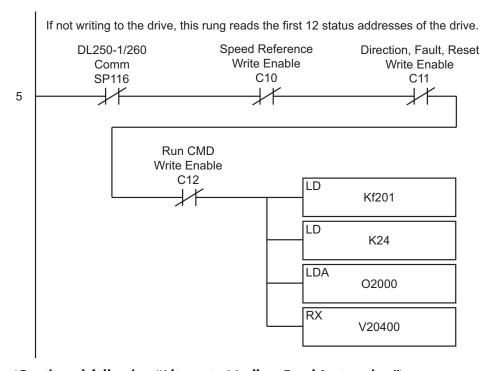
Rung 1 monitors the number of times that the PLC attempts to communicate with the AC drive. When the PLC's communication attempts are successful, SP116 will count up, and SP117 will not count. Once the count reaches 9999, the counter will reset and resume counting.



Note: SP116 and SP117 are special relays in the **Direct**LOGIC CPUs that monitor the PLC's communications. SP116 is on when Port 2 is communicating with another device. SP117 is on when Port 2 has encountered a communication error.

(Continued next page)

Rungs 2 through 4 monitor the number of times the PLC fails in communicating with the AC drive. These instructions set the C0 control relay bit (to be used for alarm or shut-down) based on the number of times the SP117 bit is active in one minute. In this example, C0 will be set if the number of errors exceed 20 in one minute.



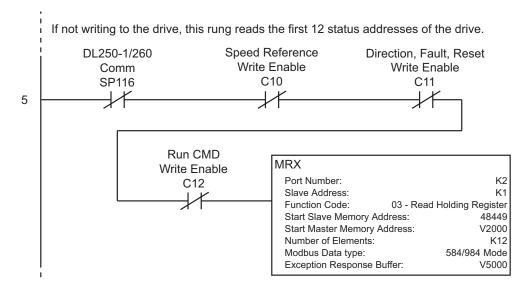
Rung 5 reads 12 of the status addresses of the GS2 AC drive. These instructions read the values from the GS2 status addresses, 2100 to 210B, and places the values into the PLC memory addresses, V2000 to V2013.

Notice the number in the RX box; V20400. 20400 is an **octal** number, as are all address references in the *Direct*LOGIC PLCs. 20400 octal converted to hex is 2100, which is the first status address for the GS2 AC drive.

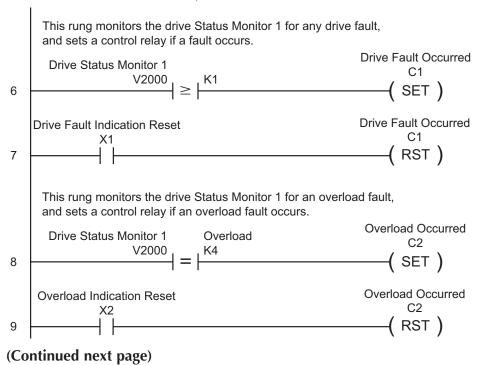
Note: Refer to your PLC User Manual for more specifics on Modbus addressing and address conversions.

(Continued following "Alternate Modbus Read Instruction")

Alternate Modbus Read Instruction for DL06 and DL260 CPUs


The DL06 and DL260 CPUs offer "Modbus Read from Network" and "Modbus Write to Network" instructions that are easier to use than are the "Read from Network" and "Write to Network" instructions of the other *Direct*LOGIC CPUs.

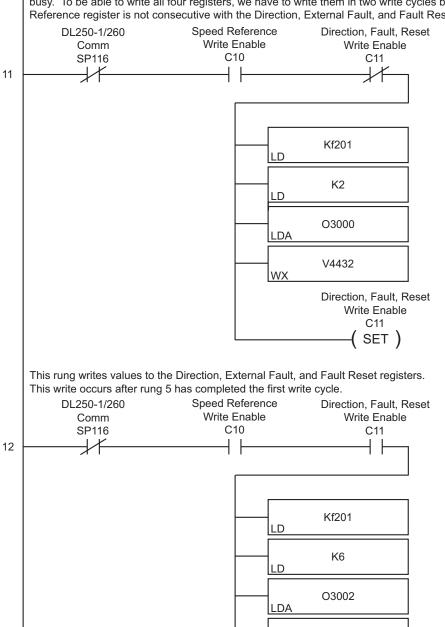
Rung 5, as shown below, reads the first 12 of the status addresses of the GS2 AC drive. This instruction reads the values from the GS2 status addresses, 2100 to 210B, and place the values into the PLC memory addresses V2000 to V2013.


The Start Slave Memory Address in the MRX box is 48449, which is a **Modbus decimal number (584/984 type)**. To convert 48449 decimal to hex, you first subtract 40001, and then convert the remainder to (hex) 2100. H2100 is the address for the GS2 Status Monitor.

Note: Refer to your PLC User Manual for more specifics on Modbus addressing and address conversions.

Rungs 6 through 9 show examples of how data read from the drive Status Addresses to set Control Relay bits that can be used for alarm or shut-down.

Rung 10 monitors the Speed Reference, Direction, External Fault, and Fault Reset Commands for changes. If there are any changes, then a control relay is set to allow the Speed Reference to be written to the drive in the next rung. (This control relay is also used in later rungs to enable writes for the other three listed commands.)


The program monitors the commands for changes, and then writes to the drive only when there is a change. This procedure promotes safe machine operation by isolating the Run Command from the write block.

This rung monitors Speed Ref, Direction, External Fault, and Fault Reset for changes. If any of them has changed, a write sequence is enabled to write the new values to the drive. Speed Ref New Speed Ref Retain V3010 10 **Direction New Direction Retain** V3002 V3012 Ext Fault New Ext Fault Retain V3013 Speed Ref Write Enable Fault Reset New Fault Reset Retain C10 V3014 V3004 Run CMD Speed Ref Write Enable Write Enable C10 C12 (SET)

(Continued next page)

Rungs 11 and 12 write the new Speed Reference, Direction, External Fault, and Fault Reset commands to the drive. We use two separate write commands in two separate rungs because the drive's Speed Reference command address (O4432) is not sequential with the Direction, External Fault, and Fault Reset command addresses (O4434 ~ O4436).

This rung writes the Speed Reference to the drive when the Enable is on, and the comm port is not busy. To be able to write all four registers, we have to write them in two write cycles because the Speed Reference register is not consecutive with the Direction, External Fault, and Fault Reset registers.

V4434

Speed, Direction, Fault, Reset Writes Finished C13

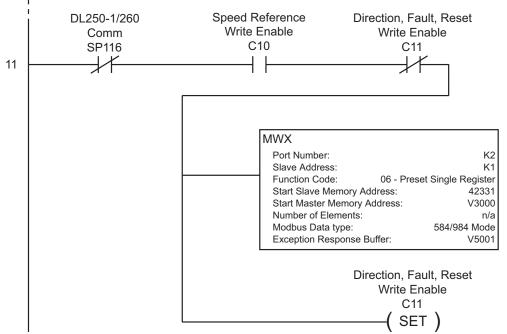
SET)

WX

"Alternate Modbus Write Instruction")

(Continued following

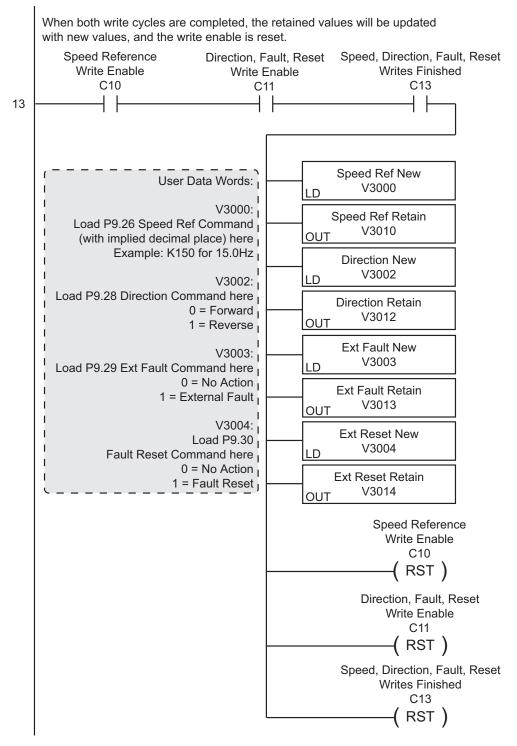
Alternate Modbus Write Instruction for DL06 and DL260 CPUs


The DL06 and DL260 CPUs offer "Modbus Read from Network" and "Modbus Write to Network" instructions that are easier to use than are the "Read from Network" and "Write to Network" instructions of the other *Direct*LOGIC CPUs.

Rungs 11, 12, and 15 write the V3000 Speed Reference, V3002 Direction, V3003 External Fault, V3004 Fault Reset, and V3001 Run values to the corresponding drive Modbus decimal addresses 42331, 42333, 42334, 42335, and 42332. In the first MWX box, the slave start memory address is 42331, which is a **Modbus decimal number (584/984 type)**. To convert 42311 decimal to hex, you first subtract 40001, and then convert the remainder to hex (91A). 91A is the address for the Serial Comm Speed Reference.

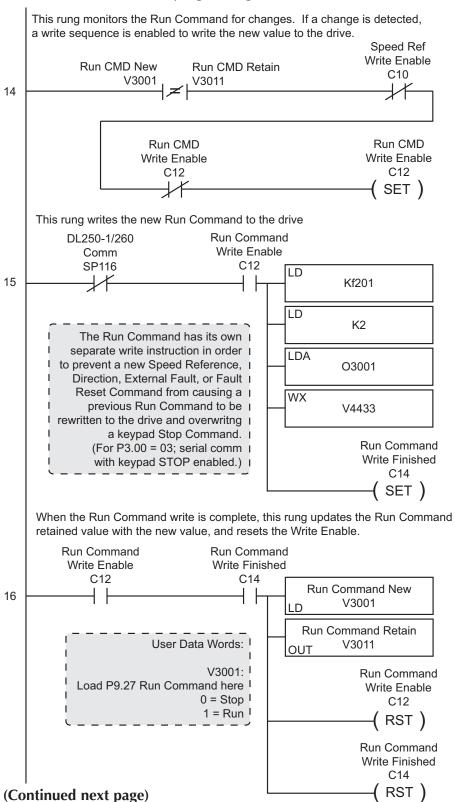
Note: Refer to your PLC User Manual for more specifics on Modbus addressing and address conversions.

This rung writes the Speed Reference to the drive when the Enable is on, and the comm port is not busy. To be able to write all four registers, we have to write them in two write cycles because the Speed Reference register is not consecutive with the Direction, External Fault, and Fault Reset registers.



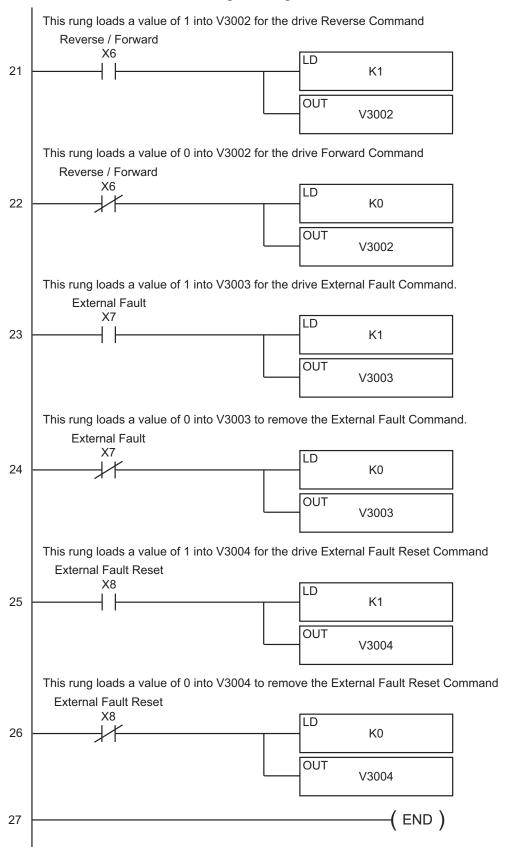
(Continued next page)

Alternate Modbus Write Instruction for DL06 and DL260 CPUs (cont.)



Rung 13 loads the new Speed Reference, Direction, External Fault, and Fault Reset Command values into the retained value registers, and resets the applicable Write Enable control relays. Now the program is ready for the next command change detection and write to the drive.

(Continued next page)


Rungs 14 through 16 check for a Run Command change, write it to the drive, store the new value in the program register, and reset the enable control relays.

Rungs 17 through 26 show an example of a method of inputting command values into the PLC.

This rung loads speed 1 into V3000. LD: loads the constant value of 300 in BCD format; BIN: converts from BCD to binary (HEX) format; OUT: stores value in V3000 to instruct the drive to run at 30.0 Hz. Speed Bit 2 Speed Bit 1 30.0 Hz 60.0 Hz X4 X3 LD 17 K300 BIN OUT V3000 This rung loads speed 2 into V3000. LD: loads the constant value of 600 in BCD format; BIN: converts from BCD to binary (HEX) format; OUT: stores value in V3000 to instruct the drive to run at 60.0 Hz. Speed Bit 1 Speed Bit 2 60.0 Hz 30.0 Hz Х3 X4 LD 18 K600 BIN OUT V3000 This rung loads a value of 1 into V3001 for the drive Run Command Run / Stop X5 LD 19 K1 OUT V3001 This rung loads a value of 0 into V3001 for the drive Stop Command Run / Stop X5 LD 20 K0 OUT V3001

(Continued next page)

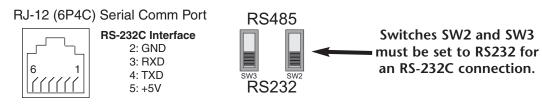
Separate Run Command Write Instruction

Why do we write the Run Command with a separate write instruction? If we write the Run Command to the drive along with the Speed Reference, Direction, External Fault, and Fault Reset Commands, we can keep the parameter addresses in sequence, and we can update all five of the commands with one write instruction. This method is valid **only** if we disable the drive's keypad STOP button (P3.00 = 04).

Typically, the keypad STOP button will be enabled (P3.00 = 03), and we need to prevent a change in one of the other commands from overriding a keypad Stop Command by causing a previous Run Command to be rewritten to the drive. By using a separate Run Command write instruction, only a deliberate Run Command change by the program will run the drive again after a stop.

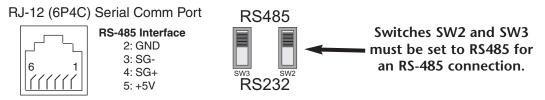
Block Transfer Parameters

For writing to any of the parameters from P0.00 to P8.01, a group of 15 block transfer parameters (P9.11 to P9.25) is available in the GS2 AC drive. This sequential block of parameters can be used to "group" various miscellaneous non-sequential parameters, so that you can update the parameters in one programming write block instead of having to use multiple WX commands.


For example: If you need to change the PID setpoint (P7.11), accel time (P1.01), and multi-speed 1 (P5.01), this would typically take three different WX commands because the parameters are non-sequential. However, by setting P9.11 to P7.11, P9.12 to P1.01, and P9.13 to P5.01, the parameters become sequential, and can be controlled using one WX command (LD Kf201, LD K6, LDA Oxxxx, WX V4413).

Communicating with Third-party Devices

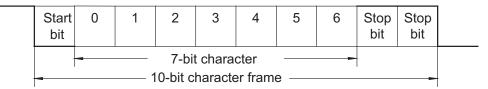
First you must decide what type of interface will work best for your application. The GS2 RJ-12 Serial Comm Port can accommodate an RS232C or an RS-485 connection.


RS-232C

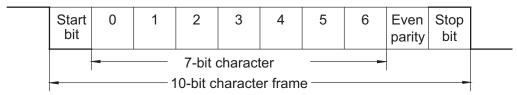
An RS-232C connection is somewhat limited. The maximum network cable length for an RS-232C connection is 15 meters (50 feet). In addition, using the RS-232C interface will allow you to connect only one AC drive to one Modbus device. For an RS-232C connection, set the GS2 DIP switches SW2 and SW3 to RS232.

RS-485

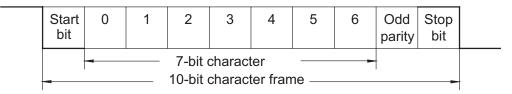
An RS-485 network cable can span up to 1000 meters (4000 feet). For an RS-485 connection, set the GS2 DIP switches SW2 and SW3 to RS485.


The GS2 Series AC drive communication address is specified by P9.00. The third party device then controls each AC drive according to its communication address. The GS2 Series AC drive can be setup to communicate on standard Modbus networks using the following transmission modes: ASCII or RTU. Using the Communication Protocol parameter (P9.02), you can select the desired mode, data bits, parity, and stop bits. The mode and serial parameters must be the same

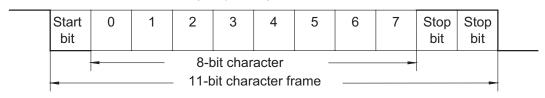
for all devices on a Modbus network.


Data Format

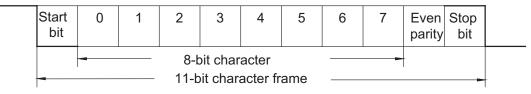
ASCII Mode: 10-bit character frame (For 7-bit character):


P9.02 = 00 (7 data bits, no parity, 2 stop bits)

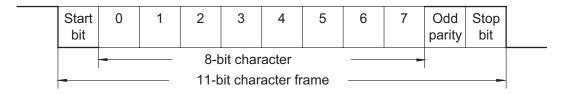
P9.02 = 01 (7 data bits, even parity, 1 stop bit)



P9.02 = 02 (7 data bits, odd parity, 1 stop bit)



RTU Mode: 11-bit character frame (For 8-bit character):


P9.02 = 03 (8 data bits, no parity, 2 stop bit)

P9.02 = 04 (8 data bits, even parity, 1 stop bit)

P9.02 = 05 (8 data bits, odd parity, 1 stop bit)

Communication Protocol

ASCII Mode:

STX	Start Character: (3AH)		
ADR 1			
ADR 0	Communication Address: 8-bit address consists of 2 ASCII codes		
CMD 1	Communication Address. 6-bit address consists of 2 A3CII codes		
CMD 0			
DATA (n-1)			
	Contents of data: n x 8-bit data consists of 2n ASCII codes. n ≤ 25 maximum of 50 ASCII codes		
DATA 0			
LRC CHK 1	LRC check sum: 8-bit check sum consists of 2 ASCII codes		
LRC CHK 0	ENC CHECK Suffi. 0-Dit Check suffi Consists of 2 /ASCII codes		
END 1	END characters: END 1 = CR (0DH), END 0 = LF (0AH)		
END-0	LIND CHARACTERS. LIND T – CR (ODTT), LIND 0 – LT (OATT)		

RTU Mode:

START	A silent interval of more than 10 ms		
ADR	Communication Address: 8-bit address		
CMD	Command Code: 8-bit command		
DATA (n-1)			
	Contents of data: n x 8-bit data, n ≤ 25		
DATA 0			
CRC CHK Low	CRC check sum: 16-bit check sum consists of 2 8-bit characters		
CRC CHK High	CINC CHECK SUITH. TO-DIT CHECK SUITH CONSISTS OF 2 0-DIT CHARACTERS		
END	A silent interval of more than 10 ms		

ADR (Communication Address)

Valid communication addresses are in the range of 0 to 254. Communication address equals to 0 means broadcast to all AC drives, in which case the drives will not reply any message to the master device.

For example, communication to AC drive with address 16 decimal:

ASCII mode: (ADR 1, ADR 0)='1','0' => '1'=31H, '0'=30H

RTU mode: (ADR)=10H

CMD (Command code) and DATA (data characters)

The format of data characters depends on the command code. The available command codes are described as followed: Command code: 03H, read N words. The maximum value of N is 12. For example, reading continuous 2 words from starting address 2102H of the AC drive with address 01H.

ASCII mode:

Command Message		Response M	lessage
STX	1:1	STX ':'	1:1
ADR 1 ADR 0	'0'	ADR 1	'0'
	'1'	ADR 0	'1'
CMD 1	'0'	CMD 1	'0'
CMD 0	'3'	CMD 0	'3'
	'2'	Number of data	'0'
Starting data	'1'	(Count by byte)	'4'
address	'0'		'1'
	'2'	Content of starting data address	'7'
	'0'	2102H	'7'
Number of data	'0'		'0'
(Count by word)	'0'		'0'
	'2'	Content data	'0'
LRC CHK 1	'D'	address 2103H	'0'
LRC CHK 0	'7'		'0'
END 1	CR	LRC CHK 1	'7'
END 0	LF	LRC CHK 0	'1'
,		END 1	CR
		END 0	LF

RTU mode:

Command Message			Response Mo	essage
ADR	01H		ADR	01H
CMD	03H		CMD	03H
Starting data	21H		Number of data	04H
address	02H		(Count by byte)	'0'
Number of data	00H		Content of data address 2102H	17H
(Count by word)	02H			70H
CRC CHK Low	6FH		Content of data address 2103H	00H
CRC CHK High	F7H			02H
·			CRC CHK Low	FEH
			CRC CHK High	5CH

Command code: 06H, write 1 word

For example, writing $6000(1770 \, \text{H})$ to address $0100 \, \text{H}$ of the AC drive with address $01 \, \text{H}$.

ASCII mode:

Command Message			Response Message	
STX	1:1	Г	STX ':'	1:1
ADR 1 ADR 0	'0'		ADR 1	'0'
	'1'		ADR 0	'1'
CMD 1	'0'		CMD 1	'0'
CMD 0	'6'		CMD 0	'6'
	'0'		Data Address	'0'
	'1'			'1'
	'0'			'0'
Data Address	'0'			'0'
	'1'		Data Content	'1'
	'7'			'7'
	'7'			'7'
	'0'			'0'
LRC CHK 1	'7'		LRC CHK 1	'7'
LRC CHK 0	'1'		LRC CHK 0	'1'
END 1 END 0	CR		END 1	CR
	LF		END 0	LF

RTU mode:

This is an example of using function code 16 for writing to multiple registers.

Command Message			Response Message	
ADR	01H		ADR	01H
CMD	10H		CMD	10H
Starting data address	20H		Starting data address	20H
	00H			00H
Number of registers	00H		Number of data (Count by word)	00H
	02H			02H
Byte count	04H		CRC CHK Low CRC CHK High	4AH
Content of data address 2000H	00H			08H
	02H			
Content of data address 2001H	02H			
	58H			
CRC CHK Low CRC CHK High	СВН			
	34H			

CHK (check sum)

ASCII Mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up module 256, the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example, reading 1 word from address 0401H of the AC drive with address 01H.

Command Message		
STX	1:1	
ADR 1	'0'	
ADR 0	'1'	
CMD 1	'0'	
CMD 0	'3'	
	'0'	
Starting data	'4'	
address	'0'	
	'1'	
	'0'	
Number of data	'0'	
(Count by word)	'0'	
	'1'	
LRC CHK 1	'F'	
LRC CHK 0	'6'	
END 1	CR	
END 0	LF	

01H+03H+04H+01H+00H+01H=0AH; the 2's complement negation of 0AH is F6H.

RTU Mode:

Response Message		
ADR	01H	
CMD	03H	
Starting data	21H	
address	02H	
Number of data	00H	
(Count by word)	02H	
CRC CHK Low	6FH	
CRC CHK High	F7H	

CRC (Cyclical Redundancy Check) is calculated by the following steps:

- Step 1: Load a 16-bit register (called CRC register) with FFFFH.
- Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
- Step 3: Shift the CRC register one bit to the right with MSB zero filling. Extract and examine the LSB.
- Step 4: If the LSB of CRC register is 0, repeat step 3; else Exclusive OR the CRC register with the polynomial value A001H.
- Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed.
- Step 6: Repeat steps 2 to 5 for the next 8-bit byte of the command message.

Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value.

Note: When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data ← a pointer to the message buffer Unsigned char length ← the quantity of bytes in the message buffer

The function returns the CRC value as a type of unsigned integer.

```
Unsigned int crc_chk(unsigned char* data, unsigned char length){
  int j;
  unsigned int reg_crc=0xFFFF;
  while(length--){
    reg_crc ^= *data++;
    for(j=0;j<8;j++){
        if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1) ^ 0xA001;
    }else{
        reg_crc=reg_crc >>1;
    }
  }
}
return reg_crc;
```

In This Chapter...

Maintenance and Inspection	.6–2
Monthly Inspection:	6–2
Annual Inspection	6–2
Troubleshooting	.6–3
Fault Codes	6–3
Warning Messages	6–6

Maintenance and Inspection

Modern AC drives are based on solid state electronics technology. Preventive maintenance is required to operate the AC drive in its optimal condition, and to ensure a long life. It is recommended that a qualified technician perform a regular inspection of the AC drive. Some items should be checked once a month, and some items should be checked yearly. Before the inspection, always turn off the AC Input Power to the unit. Wait at least 2 minutes after all display lamps have turned off, and then confirm that the capacitors have fully discharged by measuring the voltage between B1 and Frame Ground using a multimeter set to measure DC voltage.

WARNING! Disconnect AC power and ensure that the internal capacitors have fully discharged before inspecting the AC drive!

Monthly Inspection:

Check the following items at least once a month.

- 1. Make sure the motors are operating as expected.
- 2. Make sure the installation environment is normal.
- 3. Make sure the cooling system is operating as expected.
- 4. Check for irregular vibrations or sounds during operation.
- 5. Make sure the motors are not overheating during operation.
- 6. Check the input voltage of the AC drive and make sure the voltage is within the operating range. Check the voltage with a voltmeter.

Annual Inspection

Check the following items once annually.

- 1. Tighten and reinforce the screws of the AC drive if necessary. They may loosen due to vibration or changing temperatures.
- 2. Make sure the conductors and insulators are not corroded and damaged.
- 3. Check the resistance of the insulation with mega-ohm meter.
- Check the capacitors and relays; may require qualified repair shop to replace any defective components. Drive components are NOT field serviceable or replaceable.
- 5. Clean off any dust and dirt with a vacuum cleaner. Pay special attention to cleaning the ventilation ports, heat sinks, and PCBs. Always keep these areas clean. Accumulation of dust and dirt in these areas can cause unforeseen failures.

If the AC drive is not used for a long period of time, turn the power on at least once every two years and confirm that it still functions properly. To confirm functionality, disconnect the motor and energize the AC drive for 5 hours or more before attempting to run a motor with it.

Troubleshooting

Fault Codes

The AC drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The fault codes are then displayed on the digital keypad display. The six most recent faults can be read on the digital keypad display by viewing P6.31 to P6.36.

NOTE: Faults can be cleared by a reset from the keypad or input terminal.

Fault Codes			
Fault Name	Fault Descriptions	Corrective Actions	
OC	The AC drive detects an abnormal increase in current.	 Check whether the motor's horsepower corresponds to the AC drive output power. Check the wiring connections between the AC drive and motor for possible short circuits. Increase the Acceleration time (1-01 or 1-05). Check for possible excessive loading conditions at the motor. If there are any abnormal conditions when operating the AC drive after short-circuit is removed, the AC drive should be sent back to the manufacturer. 	
Oυ	The AC drive detects that the DC bus voltage has exceeded its maximum allowable value.	 Check whether the input voltage falls within the rated AC drive input voltage. Check for possible voltage transients. Bus over-voltage may also be caused by motor regeneration. Either increase the decel time or add an optional braking resistor. Check whether the required braking power is within the specified limits. 	
οН	The AC drive temperature sensor detects excessive heat.	 Ensure that the ambient temperature falls within the specified temperature range. Make sure that the ventilation holes are not obstructed. Remove any foreign objects on the heat sinks and check for possible dirty heat sink fins. Provide enough spacing for adequate ventilation. 	
Lы	The AC drive detects that the DC bus voltage has fallen below its minimum value.	Check whether the input voltage falls within the AC drive's rated input voltage.	
οL	The AC drive detects excessive drive output current. Note: The AC drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	 Check whether the motor is overloaded. Reduce torque compensation setting as set in 2-03. Increase the AC drive's output capacity. 	

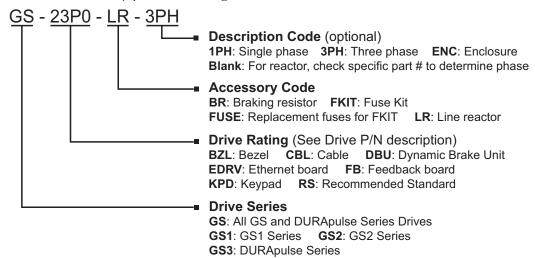
Fault Codes			
Fault Name	Fault Descriptions	Corrective Actions	
oLI	Internal electronic overload trip	 Check for possible motor overload. Check electronic thermal overload setting. Increase motor capacity. Reduce the current level so that the AC drive output current does not exceed the value set by the Motor Rated Current 0-01. 	
oL2	Motor overload. Check the parameter settings (6-07 to 6-09)	Reduce the motor load. Adjust the over-torque detection setting to an appropriate level.	
oc A	Over-current during acceleration: 1. Short-circuit at motor output. 2. Torque boost too high. 3. Acceleration time too short. 4. AC drive output capacity is too small.	 Check for possible poor insulation at the output line. Decrease the torque boost setting in 2-03. Increase the acceleration time. Replace the AC drive with one that has a higher output capacity (next HP size). 	
ocd	Over-current during deceleration 1. Short-circuit at motor output. 2. Deceleration time too short. 3. AC drive output capacity is too small.	 Check for possible poor insulation at the output line. Increase the deceleration time. Replace the AC drive with one that has a higher output capacity (next HP size). 	
ocn	Over-current during steady state operation: 1. Short-circuit at motor output. 2. Sudden increase in motor loading. 3. AC drive output capacity is too small.	 Check for possible poor insulation at the output line. Check for possible motor stall. Replace the AC drive with one that has a higher output capacity (next HP size). 	
⊏F¦	Internal memory IC cannot be programmed.	 Switch off power supply. Check whether the input voltage falls within the AC drive's rated input voltage. Switch the AC drive back on. 	
cF2	Internal memory IC can not be read.	Check the connections between the main control board and the power board. Reset drive to factory defaults.	
HPF	Hardware protection failure	Return to the factory.	
codE	Software protection failure	Return to the factory.	
cF3	AC Drive's internal circuitry abnormal	Switch off power supply. Check whether the input voltage falls within the rated AC drive input voltage. Switch on the AC drive.	
EF	DI terminal EF-CM goes from OFF to ON, or 4-20mA AI signal is lost	Remove EF-CM N.O. signal, restore EF-CM N.C. signal, or restore 4-20mA AI signal.	
cFA	Auto accel/decel failure	Don't use the function of auto acceleration/ deceleration.	

	Fault Codes								
Fault Name	Fault Descriptions	Corrective Actions							
GFF	Ground fault: The AC drive output is abnormal. When the output terminal is grounded (short circuit current is 50% more than the AC drive rated current), the AC drive power module may be damaged. The short circuit protection is provided for AC drive protection, not user protection.	Ground fault: 1. Check whether the IGBT power module is damaged. 2. Check for possible poor insulation at the output line.							
66	External Base Block: AC drive output is turned off.	 When the external input terminal (base-block) is active, the AC drive output will be turned off. Disable this connection and the AC drive will begin to work again. 							
PhL	Input Power 3 phase loss: One phase of the input power is lost.	 Check for possible poor connection on the input power line. Check for possible loss of phase on input power line. 							

Warning Messages

There are several Warning Messages that a GS2 AC Drive may give. The GS2 AC Drive allows you to decide its response to these messages. The descriptions of the Warning Messages are listed below.

	Warning	Messages
Warning Name	Warning Descriptions	Corrective Actions
CEOI	Communications Warning: Illegal command code - The command code received in the command message is not available for the AC drive.	
CE02	Communications Warning: Illegal data address - The data address received in the command message is not available for the AC drive.	The corrective action can be set with the Transmission Fault Treatment parameter (9-03). The available settings are: 0 - Display fault and continue operating
CE03	Communications Warning: Illegal data value - The data value received in the command message is not available for the AC drive.	1 - Display fault and RAMP to stop2 - Display fault and COAST to stop3 - No fault displayed and continue operatingThe default setting is 0.
СЕОЧ	Communications Warning: Slave device failure - The AC drive is unable to perform the requested action.	
CE IO	Communications Warning: Communication Time Out	
FBE	PID Warning: PID Feedback Loss - The 4-20mA PID signal has been lost.	The corrective action can be set with the PID Feedback Loss parameter (P7.27). The available settings are: 00 - Warn and AC Drive Stop 01 - Warn and Continue The default setting is 00.


Accessories

In This Appendix...

Accessories Part Numbering
Line Reactors
Line Reactor Dimensions
Braking Resistors
Braking Resistor Connections
EMI Input Filters
EMI Filter Dimensions
RF Filters
Fuses and Fuse Kits
Fuses and Fuse Kits Dimensions
GS-EDRV Ethernet Interface
GS Drive Configuration Software
System Requirements
Miscellaneous Accessories
Configuration Cable

Accessories Part Numbering

With the exception of EMI Filters, RF Filters, and some Line Reactors, GS2 Series accessory part numbers incorporate the part numbers of the AC Drives for which they are compatible. Each accessory part number begins with the AC Drive series and rating. This is followed by an accessory code, and, when applicable, a description code. The accessory part numbering scheme is shown below.

Line Reactors

Input line reactors protect the AC drive from transient overvoltage conditions typically caused by utility capacitor switching. Input line reactors also reduce the harmonics associated with AC drives, and are recommended for all installations.

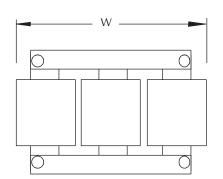
Output line (load) reactors protect the motor insulation against AC drive short circuits and IGBT reflective wave damage, and also allow the motor to run cooler by "smoothing" the motor current waveform. They are recommended for operating "non-inverter-duty" motors, and for any motors when the length of wiring between the AC drive and motor exceeds 75 feet.

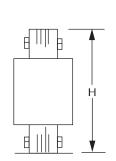
115V Single Phase Input Line Reactors*										
Part Number Rated Amps		Impedance	Inductance	Watt Loss	GS2 Drive Model and Side / Phase / Volts	Drive hp				
GS-10P2-LR	18	3%	0.80 mH	19	GS2-10P2 (input) / 1ph / 115V	0.25				
GS-10P5-LR	25	3%	0.50 mH	23	GS2-10P5 (input) / 1ph / 115V	0.5				
GS-11P0-LR	35	3%	0.40 mH	36	GS2-11P0 (input) / 1ph / 115V	1				

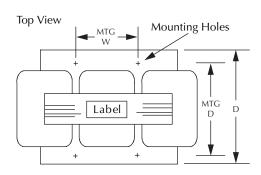
*NOTE: Single phase line reactors should NOT be installed on the output side of the AC drive.

Line Reactors (continued)

230V Single Phase Input Line Reactors*										
•		Impedance	Inductance	Watt Loss	GS2 Drive Model and Side / Phase / Volts	Drive hp				
GS-20P5-LR-1PH	8	3%	6.50 mH	13	GS2-20P5 (input) / 1ph / 230V	0.5				
GS-21P0-LR-1PH	12	3%	6.50 mH	13	GS2-21P0 (input) / 1ph / 230V	1				
GS-22P0-LR-1PH	GS-22P0-LR-1PH 18		3.00 mH	25	GS2-22P0 (input) / 1ph / 230V	2				
GS-23P0-LR-1PH	35	3%	2.50 mH	26	GS2-23P0 (input) / 1ph / 230V	3				

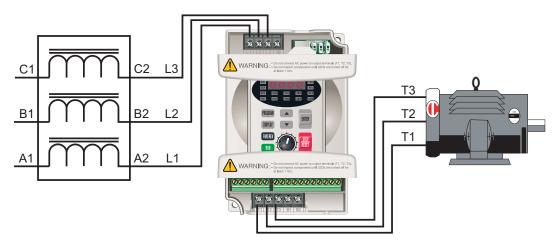

*NOTE: Single phase line reactors should NOT be installed on the output side of the AC drive.


230V Three Phase Input / Output Line Reactors										
				GS2 Drive Model and Side / Phase / Volts	Drive hp					
GS-20P5-LR-3PH	4	3%	6.50 mH	13	GS2-20P5 (in/out) / 3ph / 230V	0.5				
GS-21P0-LR-3PH	4	3%	3.00 mH	7	GS2-21P0 (in/out) / 3ph / 230V	1				
GS-22P0-LR-3PH	8	3%	1.50 mH	11	GS2-22P0 (in/out) / 3ph / 230V	2				
GS-23P0-LR-3PH	12	3%	1.30 mH	23	GS2-23P0 (in/out) / 3ph / 230V	3				
GS-25P0-LR	18	3%	0.80 mH	19	GS2-25P0 (in/out) / 3ph / 230V	5				
GS-27P5-LR	25	3%	0.50 mH	23	GS2-27P5 (in/out) / 3ph / 230V	7.5				


460	460V & 575V Three Phase Input / Output Line Reactors									
Part Number	Rated Amps	Impedance	Inductance	Watt Loss	GS2 Drive Model and Side / Phase / Volts	Drive hp				
GS-41P0-LR	2	3%	12.0 mH	7	GS2-41P0 (in/out) / 3ph / 460V	1				
GS-42P0-LR	4	3%	6.50 mH	13	GS2-42P0 (in/out) / 3ph / 460V GS2-53P0 (in/out) / 3ph / 575V	2 3				
GS-43P0-LR	8	3%	5.00 mH	31	GS2-43P0 (in/out) / 3ph / 460V GS2-55P0 (in/out) / 3ph / 575V	3 5				
GS-45P0-LR	8	3%	3.00 mH	25	GS2-45P0 (in/out) / 3ph / 460V	5				
GS-47P5-LR	12	3%	2.50 mH	26	GS2-47P5 (in/out) / 3ph / 460V GS2-57P5 (in/out) / 3ph / 575V GS2-5010 (in/out) / 3ph / 575V	7.5 7.5 10				
GS-4010-LR	18	3%	1.50 mH	29	GS2-4010 (in/out) / 3ph / 460V	10				
GS-51P0-LR	2	3%	20.0 mH	9	GS2-51P0 (in/out) / 3ph / 575V	1				
GS-52P0-LR	4	3%	9.10 mH	15	GS2-52P0 (in/out) / 3ph / 575V	2				

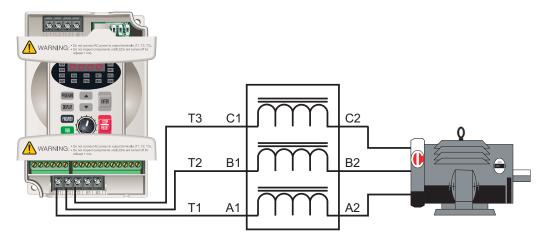
Line Reactor Dimensions

	AC Li	ne Reac	tor Dim	ensions ((inches)		
Part Number	Н	W	D	Mtg. D	Mtg. W	Mtg Slot Hole Size	Weight (lbs)
GS-10P2-LR	4.80	6.00	3.30	2.09	2.00	0.28 x 0.63	7
GS-10P5-LR	5.70	6.00	3.09	2.09	3.00	0.28 x 0.63	7
GS-11P0-LR	5.70	6.00	3.34	2.34	3.00	0.28 x 0.63	9
GS-20P5-LR-1PH	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	2.80
GS-20P5-LR-3PH	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	2.80
GS-21P0-LR-1PH	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	2.80
GS-21P0-LR-3PH	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	2.30
GS-22P0-LR-1PH	3.40	4.40	2.83	1.77	2.00	0.28 x 0.63	3.10
GS-22P0-LR-3PH	3.40	4.40	2.83	1.77	2.00	0.28 x 0.63	2.80
GS-23P0-LR-1PH	4.80	6.00	3.30	2.09	2.00	0.28 x 0.63	7.50
GS-23P0-LR-3PH	3.40	4.40	2.83	1.77	2.00	0.28 x 0.63	2.90
GS-25P0-LR	4.80	6.00	3.30	2.09	2.00	0.28 x 0.63	7.10
GS-27P5-LR	5.70	6.00	3.09	2.09	3.00	0.28 x 0.63	7.00
GS-41P0-LR	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	2.30
GS-42P0-LR	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	2.80
GS-43P0-LR	3.40	4.40	3.39	2.39	2.00	0.28 x 0.63	4.30
GS-45P0-LR	3.40	4.40	2.83	1.77	2.00	0.28 x 0.63	3.10
GS-47P5-LR	4.80	6.00	3.30	2.09	2.00	0.28 x 0.63	7.50
GS-4010-LR	4.80	6.30	3.55	2.34	2.00	0.28 x 0.63	9.10
GS-51P0-LR	3.40	4.40	2.83	1.77	1.44	0.28 x 0.63	3
GS-52P0-LR	3.40	4.40	3.33	2.37	1.44	0.28 x 0.63	3



AC Line Reactor Dimensions

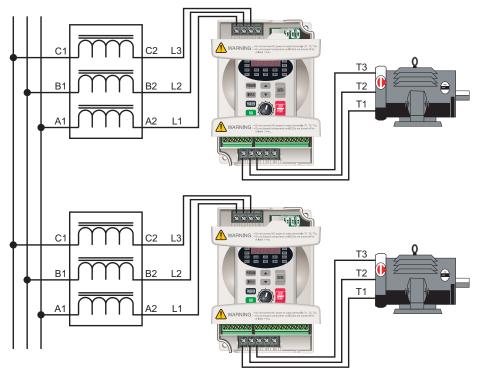
Line Reactor Applications and Connections


Input Side of AC Drive

When installed on the input side of the AC Drive, line reactors will reduce line notching, and limit current and voltage spikes and surges from the incoming line. The line reactors will also reduce harmonic distortion from the AC Drive onto the line. Units are installed in front of the AC Drive as shown.

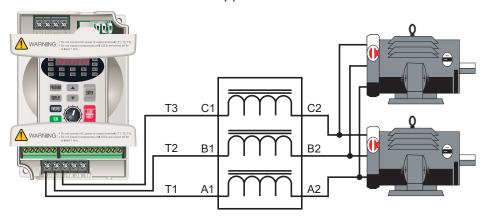
Output Side of AC Drive

When installed on the output side of the AC Drive, line reactors protect the drive from short circuits at the load. Voltage and current waveforms from the drive are enhanced, reducing motor overheating and noise emissions.



Single-phase line reactors should NOT be installed on the output of the AC Drive. Use only three-phase reactors on drive outputs.

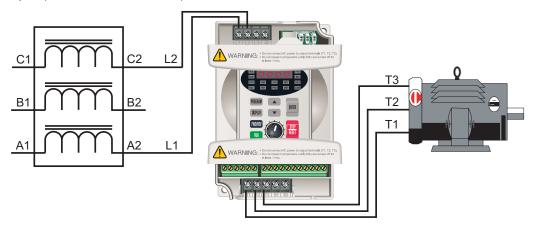
Line Reactor Applications and Connections (continued)


Multiple AC Drives

Individual line reactors are recommended when installing multiple AC Drives on the same power line. Individual line reactors eliminate cross-talk between multiple drives, and provide isolated protection for each drive for its own specific load.

Multiple Motors

A single reactor can be used when the application calls for multiple motors on the same AC Drive, if the motors operate simultaneously. The reactor is sized based on the total horsepower of all the motors. **Overload relays** (not shown) are recommended for use in multi-motor applications.



A single reactor should be used with multiple motors ONLY when the motors will operate simultaneously. OVERLOAD RELAYS are recommended for use in multiple motor applications.

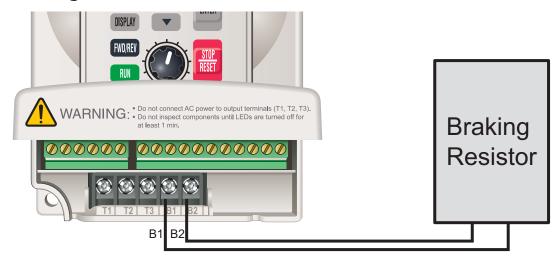
Line Reactor Applications and Connections (continued)

Single-Phase Applications

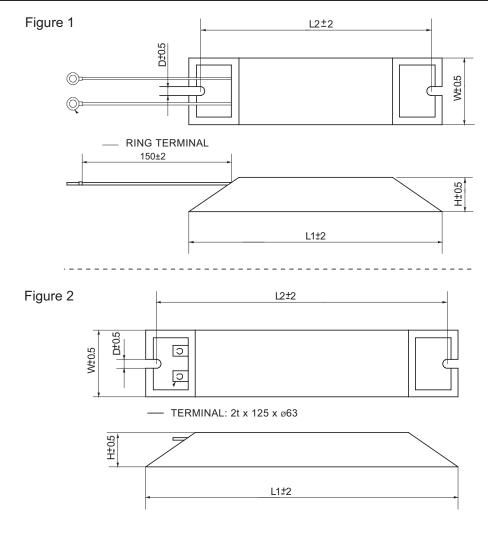
Some of the line reactors are listed for use with single-phase input power. Follow the connection diagram shown below. Make sure that terminals B1 and B2 are properly insulated before any connections are made.

WARNING: Please ensure that you properly insulate terminals B1 and B2 before making any connections to single-phase power.

Braking Resistors


Braking resistors are used to increase the control torque of the AC Drive, for frequently repeated ON-OFF cycles of the AC Drive, or for decelerating a load with large inertia.

The use of braking resistors with GS2 Series AC drives requires no parameter setup. The AC drive automatically senses the presence of braking resistors.


	Braking Resistor Specifications									
Part Number	Quantity & Wiring	Drive Model	Braking Torque	Ohms	Watts	Duty Cycle				
GS-20P5-BR	1	GS2-10P2, GS2-10P5, GS2-20P5	270%	200Ω	80	10%				
GS-21P0-BR	1	GS2-11P0, GS2-21P0	125%	200Ω	80	10%				
GS-22P0-BR	1	GS2-22P0	125%	100Ω	300	10%				
GS-23P0-BR	1	GS2-23P0	125%	70Ω	300	10%				
GS-25P0-BR	1	GS2-25P0	125%	40Ω	400	10%				
GS-27P5-BR	1	GS2-27P5	125%	30Ω	500	10%				
GS-41P0-BR	1	GS2-41P0	125%	750Ω	80	10%				
GS-42P0-BR	1	GS2-42P0, GS2-51P0, GS2-52P0	125%	400Ω	300	10%				
G3-42PU-BK	2 in parallel	GS2-53P0, GS2-55P0, GS2-57P5	12376	40012	300	10 %				
GS-43P0-BR	1	GS2-43P0	125%	250Ω	300	10%				
GS-45P0-BR	1	GS2-45P0	125%	150Ω	400	10%				
GS-47P5-BR	1	GS2-47P5	125%	100Ω	500	10%				
GS-4010-BR	1	GS2-4010	125%	750	1000	10%				
G3-4010-DK	2 in series	GS2-5010	12376	75Ω	1000	10 7/0				

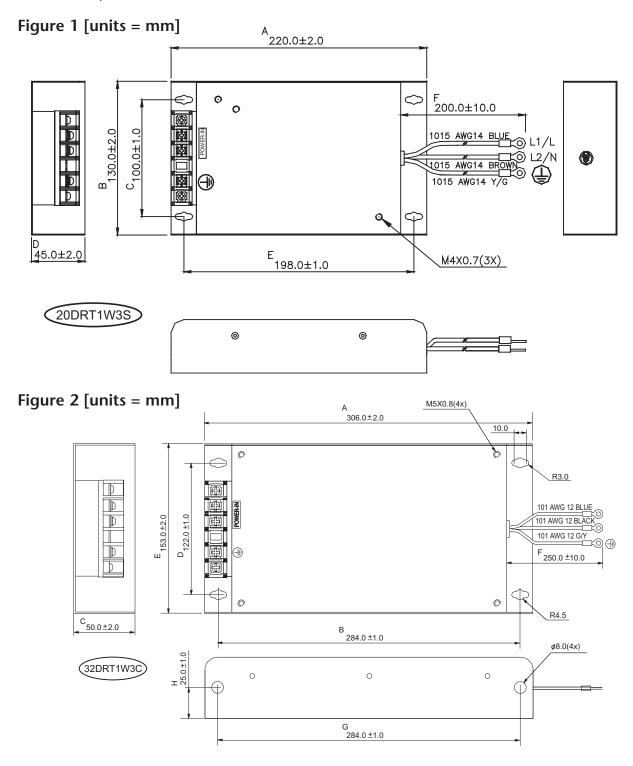
Braking Resistor Connections

Braking Resistor Dimensions

	Braking Resistor Dimensions (mm)									
Part Number	Figure	L1	L2	Н	D	W	Maximum weight (g)			
GS-20P5-BR	1	140	125	20	5.3	60	160			
GS-21P0-BR	1	140	125	20	5.3	60	160			
GS-22P0-BR	1	215	200	30	5.3	60	750			
GS-23P0-BR	1	215	200	30	5.3	60	750			
GS-25P0-BR	1	265	250	30	5.3	60	930			
GS-27P5-BR	2	335	320	30	5.3	60	1100			
GS-41P0-BR	1	140	125	20	5.3	60	160			
GS-42P0-BR	1	215	200	30	5.3	60	750			
GS-43P0-BR	1	215	200	30	5.3	60	750			
GS-45P0-BR	1	265	250	30	5.3	60	930			
GS-47P5-BR	2	335	320	30	5.3	60	1100			
GS-4010-BR	2	400	385	50	5.3	100	2800			

EMI Input Filters

The EC Declaration of Conformity for the GS2 Series AC Drives was completed in conjunction with EMI Filters listed below.



CE compliance requires the use of EMI filters; not available for 575V drives.

	EMI Input Filt	er Specifications			
EMI Filter	AC Drive Model / Input Phase	Filter Input Rating	Filter Dimensions		
20DRT1W3S	GS2-10P2 / 1ph GS2-10P5 / 1ph GS2-11P0 / 1ph GS2-20P5 / 1ph GS2-21P0 / 1ph GS2-22P0 / 1ph	250V, 1-phase, 20A	Figure 1		
32DRT1W3C	GS2-23P0 / 1ph	250V, 1-phase, 32A	Figure 2		
not available	GS2-20P5 / 3ph	n/a			
10TDT1W4C *	GS2-21P0 / 3ph GS2-22P0 / 3ph	250V, 3-phase, 10A	Figure 3		
26TDT1W4C *	GS2-23P0 / 3ph	250V, 3-phase, 26A	Figure 4		
40TDS4W4B	GS2-25P0 / 3ph GS2-27P5 / 3ph	250V, 3-phase, 40A	Figure 5		
11TDT1W4S	GS2-41P0 / 3ph GS2-42P0 / 3ph GS2-43P0 / 3ph	480V, 3-phase, 11A	Figure 6		
17TDT1W44	GS2-45P0 / 3ph GS2-47P5 / 3ph	480V, 3-phase, 17A	Figure 7		
26TDT1W4B4	GS2-4010 / 3ph	480V, 3-phase, 26A	Figure 8		
not available	GS2-5xxx	n/a	1		
* EMI filters 10TD	T1W4C and 26TDT1W4	AC do not mount underi	neath GS2 drives.		

EMI Filter Dimensions

These filters, except 10TDT1W4C and 26TDT1W4C, mount between the drive and the subpanel. The filters have threaded holes on their front surface for this purpose, and the drives mount directly to the front of the filters.

EMI Filter Dimensions (continued)

Figure 3 [units = mm (in)]

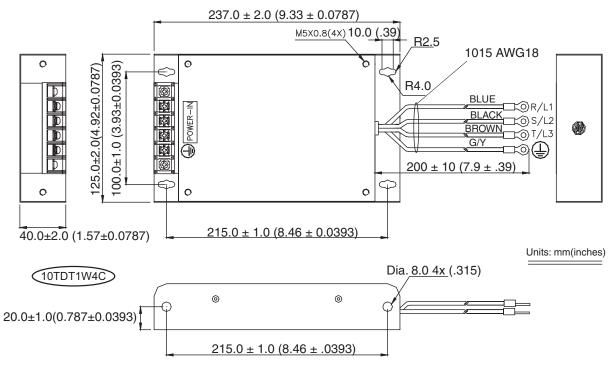
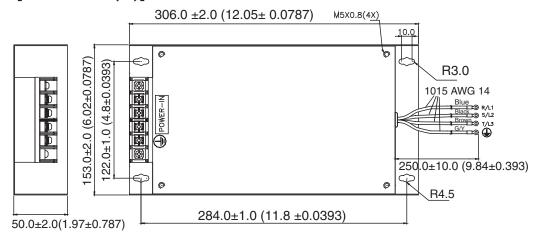
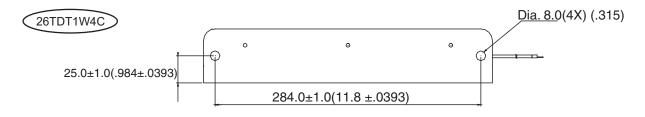




Figure 4 [units = mm (in)]

EMI Filter Dimensions (continued)

Figure 5 [units = mm]

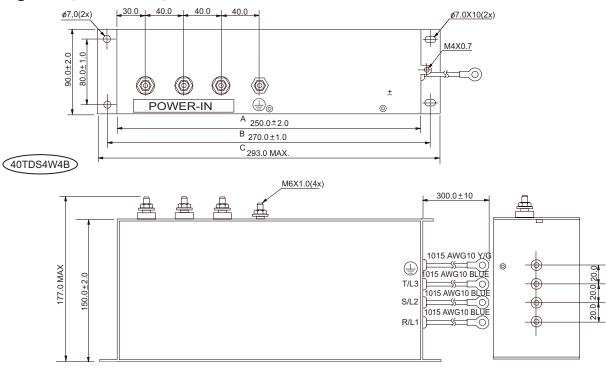
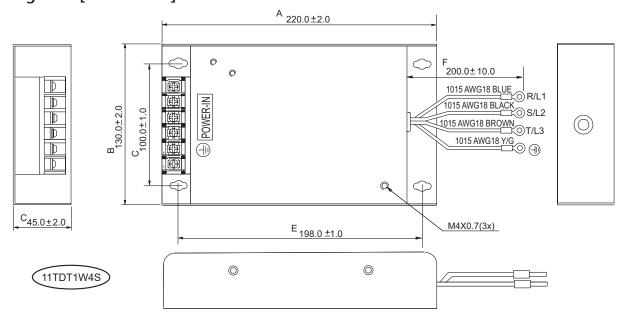



Figure 6 [units = mm]

EMI Filter Dimensions (continued)

Figure 7 [units = mm]

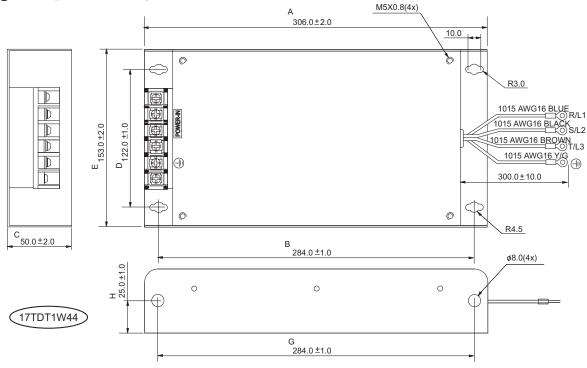
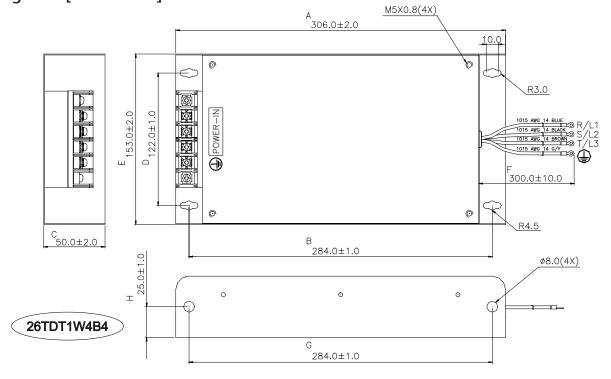
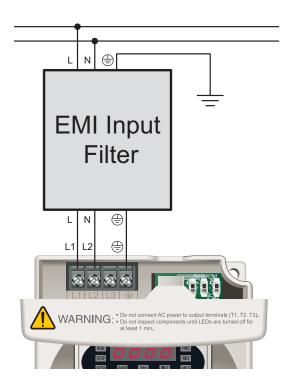
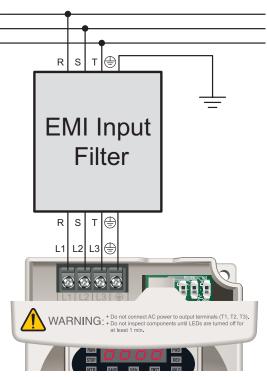




Figure 8 [units = mm]

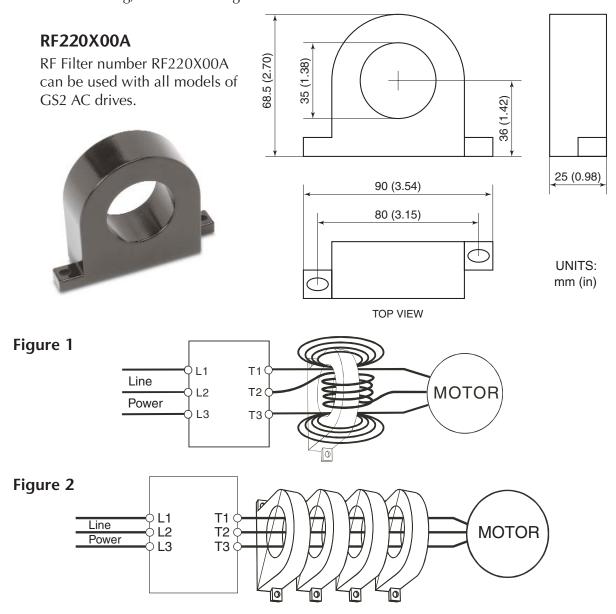


EMI Filter Connections

1-phase Input Power

3-phase Input Power

RF Filters


Description

Zero phase reactors, (aka RF noise filters) help reduce radiated noise from the AC drive power wiring. These RF filters are effective for noise reduction on both the input and output sides of AC drives. Attenuation quality is good in a wide range from AM band to 10 MHz.

Wiring Method

Wind each wire four times around the core, as shown in Figure 1. The reactor should me mounted as closely as possible to the drive.

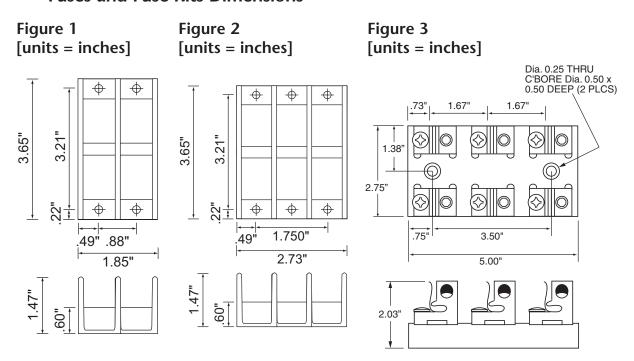
If you are unable to wire as described above due to wire size or another aspects of your application, put all wires through four reactor cores in series without winding, as shown in Figure 2.

Fuses and Fuse Kits

Short-circuit and ground fault protection devices are essential to prevent costly damage to your AC Drive application equipment. Fuse kits are available from AutomationDirect for the 115V through 460V GS2 Series AC Drives.

Warning: The fuse kits provide protection only for the semiconductor components inside the AC drive. Motor branch circuit overcurrent protection should be separately provided using applicable local codes.

The following fuse kits consist of one fuse block and fuses sized to match each GS2 Series AC Drive. Replacement fuses are also available, and their part numbers are listed in the table below.

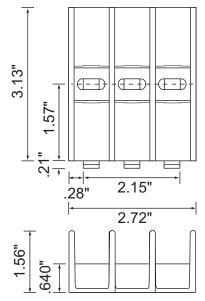

Fuse Kit	Specificatio	ns (fo	r 115\	/, 2 30	V, 460V	' GS2 drive	e models)					
Part Number	Drive Model / Phase	Fuse Block	Wire Size	Fuse Type	Dimen -sions	Fuse Rating	Replacement Fuses					
GS-10P2-FKIT-1P	GS2-10P2 / 1						GS-10P2-FUSE-1P					
GS-10P5-FKIT-1P	GS2-10P5 / 1	2 pole			Figure 1	300V@20A	GS-10P5-FUSE-1P					
GS-11P0-FKIT-1P	GS2-11P0 / 1	2 pole			Tigule I	300V@20A	GS-11P0-FUSE-1P					
GS-20P5-FKIT-1P	GS2-20P5 / 1						GS-20P5-FUSE-1P					
GS-20P5-FKIT-3P	GS2-20P5 / 3	3 pole			Figure 2	300V@10A	GS-20P5-FUSE-3P					
GS-21P0-FKIT-1P	GS2-21P0 / 1	2 pole	Al/Cu #2-14	#2-14		Figure 1	300V@30A	GS-21P0-FUSE-1P				
GS-21P0-FKIT-3P	GS2-21P0 / 3	3 pole				#2-14	#2-14	A3T	Figure 2	300V@20A	GS-21P0-FUSE-3P	
GS-22P0-FKIT-1P	GS2-22P0 / 1	2 pole								Figure 1	300V@45A	GS-22P0-FUSE-1P
GS-22P0-FKIT-3P	GS2-22P0 / 3	3 pole							Figure 2	300V@25A	GS-22P0-FUSE-3P	
GS-23P0-FKIT-1P	GS2-23P0 / 1	2 pole			Figure 1	300V@60A	GS-23P0-FUSE-1P					
GS-23P0-FKIT-3P	GS2-23P0 / 3				Figure 2	300V@40A	GS-23P0-FUSE-3P					
GS-25P0-FKIT	GS2-25P0 / 3								rigure 2	300V@60A	GS-25P0-FUSE	
GS-27P5-FKIT	GS2-27P5 / 3		Al/Cu 2/0-#6		Figure 3	300V @100A	GS-27P5-FUSE					
GS-41P0-FKIT	GS2-41P0 / 3					600V@10A	GS-41P0-FUSE					
GS-42P0-FKIT	GS2-42P0 / 3	3 pole	11/6		Figure 4	600V@15A	GS-42P0-FUSE					
GS-43P0-FKIT	GS2-43P0 / 3		Al/Cu #2-14		rigule 4	600V@20A	GS-43P0-FUSE					
GS-45P0-FKIT	GS2-45P0 / 3		<i>"-</i> · ·	A6T		600V@30A	GS-45P0-FUSE					
GS-47P5-FKIT	GS2-47P5 / 3			Figure 5	600V@50A	GS-47P5-FUSE						
GS-4010-FKIT	GS2-4010 / 3		Al/Cu 2/0-#6		Figure 6	600V@70A	GS-4010-FUSE					

Fuses and Fuse Kits (continued)

Edison Class CC fuses and fuse blocks are available for the 575V GS2 drives.

Fuses (for 575V GS2 drive models)							
Drive Model	Fuse Rating	Fuse Type (Qty Req'd)	Edison Fuse	Edison Fuse Block	Dimensions	Poles	Wire Range
GS2-51P0	6A @ 600V		HCLR6				
GS2-52P0	10A @ 600V		HCLR10	BC6033PQ	Figure 7		
GS2-53P0	15A @ 600V	CC (2)	HCLR15	or CHCC3D	Eiguro 0	3	18-8 AWG
GS2-55P0	13A @ 600V	CC (3)	HCLKIS	or	Figure 8	3	$(1-16 \text{ mm}^2)$
GS2-57P5	20A @ 600V		HCLR20	CHCC3DI	Figure 8		
GS2-5010	30A @ 600V		HCLR30				

Fuses and Fuse Kits Dimensions



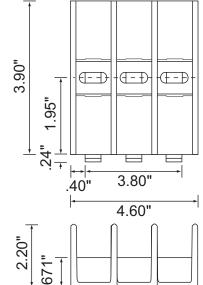

Fuses and Fuse Kits Dimensions (continued)

Figure 4 [units = inches]

Figure 5 [units = inches]

Figure 6 [units = inches]

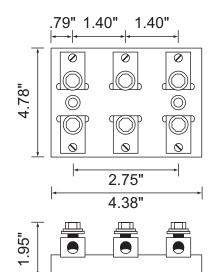
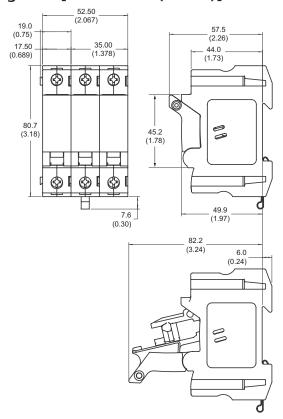


Figure 7 [units = inches (mm)]

3 POLE

1.625" ± 0.015"
(41.28mm ± 0.38mm)


1.210" ± 0.015"
(30.73mm ± 0.38mm)

BC6033PQ

SDA 600V
CLSS CO. UNIX
(30.000 REVS SYM
WITHSTAND RATING)

CU ONIX
(10.4WG 20 LB IN)

Figure 8 [units = mm (inches)]

GS-EDRV Ethernet Interface

The GS-EDRV Ethernet Interface provides a low-cost, high-performance Ethernet link between a PLC/PC-based Control system and any GS Series AC Drive. The GS-EDRV mounts on DIN rail and communicates through cable connections to the AC drive and Ethernet hub or PC.

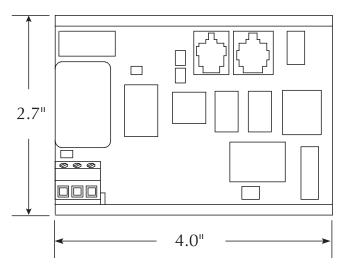
Functions and features of the interface:

- process input signals from the AC drive
- formats signals to conform to the Ethernet standard for connectivity to many control system architectures: H2-ERM or H4-ERM, KEPDirect EBC I/O server, or independent controller with a Modbus TCP/IP driver
- transmit the signals to the PC-based controller
- receive and translate output signals from the PLC/PC-based Control software
- distribute the output signals to the appropriate drive
- built-in web browser allows users to configure and control the drive from any web browser via the IP address of the GS-EDRV card.

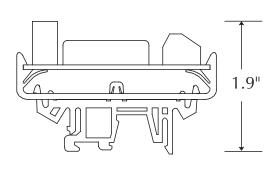
The control function is not performed by the interface. The control function is performed by PC-based Control software (which is purchased separately) running on a PC.

The GS-EDRV requires an external 24 VDC power supply.

The GS series drives have a provision for shutting down control or power to the drive in the event of a communications time-out. This function can be set up through the drive parameter group 9.


GS-EDRV

Ethernet interface number GS-EDRV can be used with all models of GS2 AC drives.


Specifications			
Part Number	Input Voltage	Input Current	
GS-EDRV	10-33 VDC	90-135 mA	
Can be used with all GS2 AC drives.			

GS-EDRV Ethernet Interface (continued)

Dimensions

units: inches

GS Drive Configuration Software

GSoft is the optional configuration software for the GS family of AC drives. It allows you to connect a PC to a GS series AC drive via RS-232 or RS-485, and performs a variety of functions:

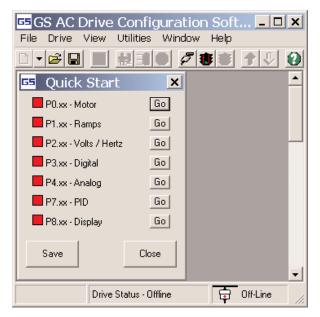
GS Series AC Drive Software			
Part Number	Description		
GSOFT	GS drives configuration software		

- Upload/download drive configurations
- Create new drive configurations using Quick Start, Detailed, or Schematic Views
- Edit drive configurations
- Archive/store multiple drive configurations on your PC
- Trend drive operation parameters
- Tune the drive PID loop
- View drive faults
- Print a schematic representation of the drive configuration

System Requirements

GSoft will run on PCs that meet the following requirements:

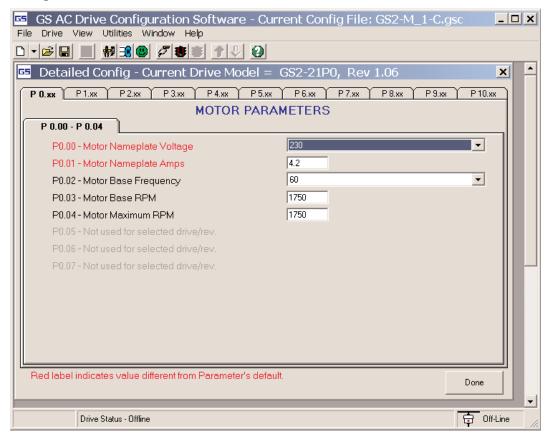
- Windows 95, 98, Me, NT, 2000, and XP
- Internet Explorer 4.0 or higher (for HTML help support)
- 24Mb of available memory
- 8 Mb hard drive space
- Available RS-232 serial port


Note: GSoft requires use of a configuration cable, GS-232CBL, which is sold separately. Note: RS-485 communication from an RS-232 PC port requires an FA-ISOCON or compatible converter, which is sold separately.

Software Configuration Methods

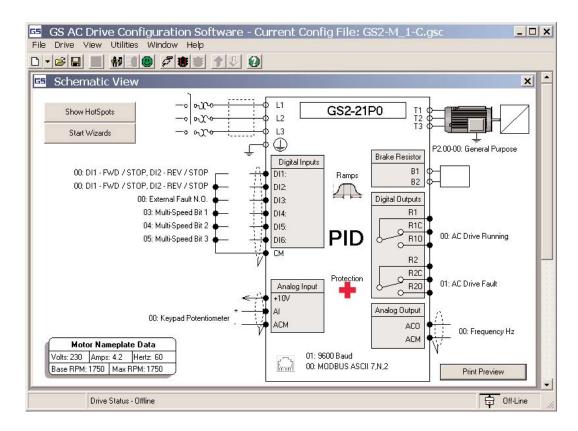
GSoft offers 3 methods of creating a new configuration for your AC drive.

Quick Start Configuration


The Quick Start Configuration method guides you through the most commonly used AC drive parameters. Quick Start Configuration may ONLY be used to create a new configuration. Once created and saved, a configuration built with the Quick Start Configuration method may be edited using the Detailed or Schematic View methods.

Software Configuration Methods (continued)

Detailed Configuration


The Detailed Configuration method provides AC drive parameter access in a tabbed dialog format. Detailed Configuration can be used for new or existing configurations.

Software Configuration Methods (continued)

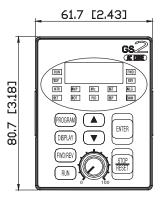
Schematic View Configuration

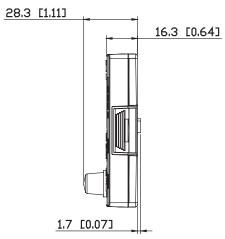
The Schematic View Configuration method uses a schematic picture of the AC drive and external connections to guide you through the setup of the AC drive. The Schematic View method can be used for new or existing configurations.

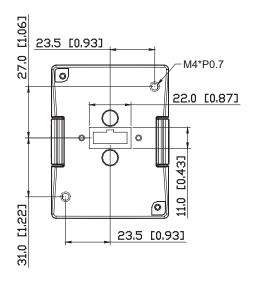
Miscellaneous Accessories

Configuration Cable

GS-232CBL


Required programming cable for GSOFT software.


Spare Keypad


GS2-KPD

Spare or replacement keypad for GS2 AC drives.

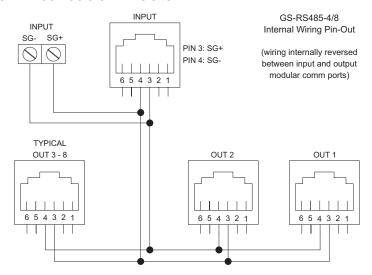
Keypad Cables

(installation screws included)

GS-CBL2-1L

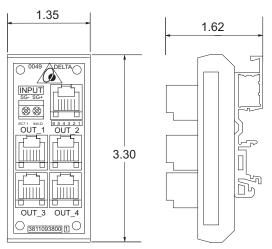
1 meter keypad cable

GS-CBL2-3L


3 meter keypad cable

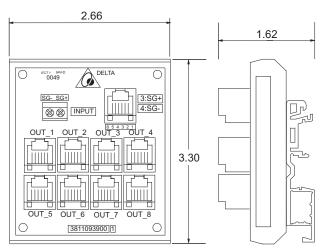
GS-CBL2-5L

5 meter keypad cable


Communication Distribution Blocks

GS-RS485-4

4 port RS485 Communication Distribution Board



GS-RS485-8

8 port RS485 Communication Distribution Board

In This Appendix

Compatible <i>Direct</i> LOGIC PLCs and ModulesB-2
Typical Connections to the GS2 Series AC DriveB-7
DC Output ModulesB–7
Isolated Analog Output Modules
Non-Isolated Voltage or Sourcing Current Analog Output Modules .
B–9

Compatible DirectLOGIC PLCs and Modules

The following tables show which *Direct*LOGIC PLCs and modules can be used with the GS2 Series AC Drive.

	DirectLOGIC PLC Modules for Use with GS2 AC Drives
DL05 PLCs	Directed are the iniciality for one with any the brives
D0-05AR	DL05 CPU, 8 AC in / 6 Relay out, 110/220VAC Power Supply. Inputs: 8 AC inputs, 90-120 VAC, 2 isolated commons. Outputs: 6 Relay outputs, 6-27 VDC, 6-240 VAC, 2A/pt. max., 2 isolated commons
D0-05DR	DL05 CPU, 8 DC in / 6 Relay out, 110/220VAC Power Supply. Inputs: 8 DC inputs, 12-24 VDC current sinking/sourcing, 2 isolated commons. Outputs: 6 Relay outputs, 6-27 VDC, 6-240 VAC, 2A/pt. max., 2 isolated commons
D0-05DD	DL05 CPU, 8 DC in / 6 DC out, 110/220VAC Power Supply. Inputs: 8 DC inputs, 12-24 VDC current sinking/sourcing, 2 isolated commons. Outputs: 6 DC outputs, 6-27 VDC current sinking, 1.0A/pt. max.
D0-05DD-D	DL05 CPU, 8 DC in / 6 DC out, 12/24VDC Power Supply. Inputs: 8 DC inputs, 12-24 VDC current sinking/sourcing, 2 isolated commons. Outputs: 6 DC outputs, 6-27 VDC current sinking, 1.0A/pt. max.
D0-05DR-D	DL05 CPU, 8 DC in / 6 Relay out, 12/24VDC Power Supply. Inputs: 8 DC inputs, 12-24 VDC current sinking/sourcing, 2 isolated commons. Outputs: 6 Relay outputs, 6-27 VDC, 6-240 VAC, 2A/pt. max., 2 isolated commons
DL06 PLCs	
D0-06DD1	DL06 CPU, 20 DC in / 16 DC out, 110/220VAC Power Supply, with 0.3A 24VDC Auxiliary Device Power Supply. Inputs: 20 DC inputs, 12-24 VDC current sinking/sourcing, 5 isolated commons (4 inputs per common). Outputs: 16 DC outputs, 12-24 VDC current sinking, 1.0A/pt. max., 4 commons non-isolated (4 points per common)
D0-06DR	DL06 CPU, 20 DC in / 16 Relay out, 110/220VAC Power Supply, with 0.3A 24VDC Auxiliary Device Power Supply. Inputs: 20 DC inputs, 12-24 VDC current sinking/sourcing, 5 isolated commons (4 inputs per common). Outputs: 16 Relay outputs, 6-27 VDC, 6-240 VAC, 2A/pt. max., 4 isolated commons (4 points per common)
D0-06AR	DL06 CPU, 16 AC in / 20 Relay out, 110/220VAC power supply, with 0.3A 24VDC auxiliary device power supply. Inputs: 20 AC inputs, 90-120 VAC, 5 isolated commons (4 inputs per common). Outputs: 16 Relay outputs, 6-27 VDC, 6-240 VAC, 2A/pt. max., 4 isolated commons (4 points per common)
D0-06DD1-D	DL06 CPU, 20 DC in / 16 DC out, 12/24VDC Power Supply. Inputs: 20 DC inputs, 12-24 VDC current sinking/sourcing, 5 isolated commons (4 inputs per common). Outputs: 16 DC outputs, 12-24 VDC current sinking, 1.0A/pt. max., 4 commons non-isolated (4 points per common).
D0-06DR-D	DL06 CPU, 20 DC in / 16 Relay out, 110/220VAC Power Supply. Inputs: 20 DC inputs, 12-24 VDC current sinking/sourcing, 5 isolated commons (4 inputs per common). Outputs: 16 Relay outputs, 6-27 VDC, 6-240 VAC, 2A/pt. max., 4 isolated commons (4 points per common)
DL05/DL06 D	C Input/Output Module
D0-08CDD1	4 pt. 12-24VDC current sinking/sourcing input, 1 common, 4 pt. 12-24VDC sinking output, 0.3A/point, 1.2A/module, removable terminal, no fuse

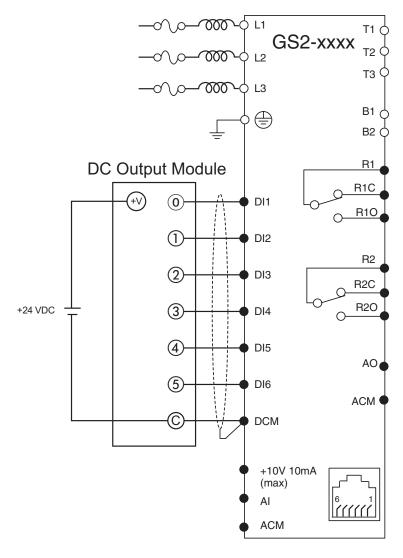
Dire	ctLOGIC PLC Modules for Use with GS2 AC Drives (cont.)			
DL05/DL06 DC Output Module				
D0-10TD1	10 pt. 12-24 VDC current sinking output module, 2 commons non-isolated (5 pts. per common), 0.3A/point, 1.5A/common, removable terminal, no fuse			
D0-16TD1	16 pt. 12-24 VDC current sinking output module, 2 commons non-isolated (5 pts. per common), 0.3A/point, 1.5A/common, removable terminal, no fuse			
DL05/DL06 Ana	alog Module			
F0-2AD2DA-2	2 channel in, 2 channel out voltage analog option card; 0-5V, 0-10V			
F0-4AD2DA-2	4 channel in, 2 channel out voltage analog option card; 0-5V, 0-10V			
F0-4AD2DA-1	4 channel in, 2 channel sourcing out current analog option card; 4-20mA			
DL105 PLCs				
F1-130DR	DL130 CPU, 10 DC in / 8 Relay out, 110/220VAC Power Supply. Inputs: 10 DC inputs, 12-24 VDC current sinking/sourcing, 3 isolated commons. Outputs: 8 relay outputs, 12-30 VDC, 12-250VAC, 7A/pt. max., 4 isolated commons			
F1-130DD	DL130 CPU, 10 DC in / 8 DC out, 110/220VAC Power Supply. Inputs: 10 DC inputs, 12-24 VDC current sinking/sourcing, 3 isolated commons. Outputs: 8 DC outputs, 5-30VDC current sinking, 0.5A/pt. max, 3 internally connected commons			
F1-130DR-D	DL130 CPU, 10 DC in / 8 Relay out, 12/24VDC Power Supply. Inputs: 10 DC inputs, 12-24 VDC current sinking/sourcing, 3 isolated commons. Outputs: 8 relay outputs, 12-30 VDC, 12-250VAC, 7A/pt. max., 4 isolated commons			
F1-130DD-D	DL130 CPU, 10 DC in / 8 DC out, 12/24VDC Power Supply. Inputs: 10 DC inputs, 12-24 VDC current sinking/sourcing, 3 isolated commons. Outputs: 8 DC outputs, 5-30VDC current sinking, 0.5A/pt. max, 3 internally connected commons			
DL205 DC Output Module				
D2-16TD1-2	16 pt. 12-24 VDC current sinking output module, 1 common (2 common terminals), 0.1A/point, 1.6A/module, no fuse, European type removable terminal			
D2-32TD1	32 pt. 12-24 VDC current sinking output module. 1 common (4 common terminals), 0.1A/point, 3.2A/module, no fuse			

Dire	ctLOGIC PLC Modules for Use with GS2 AC Drives (cont.)			
DL205 Relay O	utput Modules			
D2-04TRS	4-pt. 5-30 VDC or 5-240 VAC isolated relay output module, 4 Form A (SPST) relays, 4 commons, 4A/point, 8.0A/module, replaceable fuse, removable terminal			
D2-08TR	8-pt. 5-30 VDC or 5-240 VAC output module, 8 Form A (SPST) relays, 1 common (2 common terminals), 1A/point, 4.0A/module, replaceable fuse, removable terminal			
F2-08TR	8-pt relay output, 10A/common, 5-30VDC or 5-240VAC			
F2-08TRS	8-pt. 12-28 VDC or 12-240 VAC output module, 5 Form A (SPST) relays, 3 Form C (SPDT) relays, 8 isolated commons, 7A/point max., no fuses, removable terminal			
D2-12TR	12 pt. 5-30 VDC or 5-240 VAC relay output module, 12 Form A (SPST) relays, 2 commons, 1.5A/point max., 3.0A/common, 2 replaceable fuses, removable terminal			
DL205 DC Inpu	nt/Output Modules			
D2-08CDR	4 pt. 24VDC sinking/sourcing input, 1 common, 4 pt. relay output, 1A/pt., 4A/module, 1 common, replaceable fuse			
DL205 Analog Output Module				
F2-02DAS-1	2 channel, 16-bit resolution, Isolated 4-20mA sourcing (2 isolated commons). Designed to operate with 24 VDC user-supplied power supply.			
F2-02DAS-2	2 channel analog output, 16 bit resolution, isolated, range: 0-5V, 0-10V (2 isolated commons). Designed to operate with 24 VDC user-supplied power supply.			
F2-08DA-1	8 channel analog output module, 12 bit resolution, range: 4-20mA, sink or source output configurable. Designed to operate with 24 VDC user-supplied power supply.			
F2-02DA-2	2 channel analog output module, 12 bit resolution, ranges: 0-5V, 0-10V, -5 to +5V, -10 to +10V. Designed to operate with 24 VDC user-supplied power supply.			
F2-08DA-2	8 channel analog output module, 12 bit resolution, ranges: 0-5V, 0-10V. Designed to operate with 24 VDC user-supplied power supply.			
DL205 Analog	Input Modules			
F2-04AD-2	4 channel, 12-bit, 0-5V, 0-10V, -5 to +5V, -10 to +10V. Designed to operate with a 24VDC user supplied power supply.			
F2-08AD-2	8 channel, 12-bit, 0-5V, 0-10V, -5 to +5V, -10 to +10V. Designed to operate with a 24VDC user supplied power supply.			
DL205 Analog Combination Modules				
F2-8AD4DA-1	8 channel, 16-bit, 0-20mA in; 4 channel, 16-bit, 4-20mA out. Designed to operate with a 24VDC user supplied power supply.			
F2-8AD4DA-2	8 channel, 16-bit, 0-5V, 0-10V in; 4 channel, 16-bit, 0-5V, 0-10V out. Designed to operate with a 24VDC user supplied power supply.			

Dire	ctLOGIC PLC Modules for Use with GS2 AC Drives (cont.)			
DL305 Relay Output Modules				
D3-08TR	8 pt. 5-30 VDC or 5-220 VAC output module, 5A/point DC or 4A/point AC, 8 Form A relays (SPST), 2 commons (isolated), non-removable terminal, 2 user replaceable fuses			
D3-16TR	16 pt. 5-30 VDC or 5-220 VAC output module, 2A/point,16 Form A relays (SPST), 2 commons (isolated), removable terminal, no internal fuses			
DL305 Analog	Output Modules			
F3-04DAS	4 channel isolated analog output module, 12 bit resolution, ranges: 0 to 5V, 0 to 10V, -5 to +5V, -10 to +10V, 4 to 20mA, 0 to 20mA750 to +750 VDC channel to channel isolation			
F3-16AD	16 channel analog input module, 12 bit resolution, ranges: -5 to +5V, -10 to +10V, 0 to 10V, 0 to 20mA. Each point can be either a voltage or current input			
DL305 Analog	Output Modules			
F3-04DAS	4 channel isolated analog output module, 12 bit resolution, ranges: 0 to 5V, 0 to 10V, -5 to +5V, -10 to +10V, 4 to 20mA, 0 to 20mA750 to +750 VDC channel to channel isolation			
DL405 DC Out	•			
D4-08TD1	8 pt. 12-24 VDC current sinking output module, 2 commons (internally connected), 2A/point, 5A/common, removable terminal			
D4-16TD1	16 pt. 5-24 VDC current sinking output module, 2 commons (internally connected), 0.5A/point, 3A/common, removable terminal			
D4-32TD1	32 pt. 5-24 VDC current sinking output module, 4 commons (isolated), 0.2A/point, 1.6A/common. Requires one connector, sold separately			
DL405 Relay C	Output Modules			
D4-08TR	8 pt. 5-30 VDC or 5-250 VAC output module, 8 Form A (SPST) relays, 2 commons (isolated), 2A/point, 5A/common, removable terminal			
F4-08TRS-1	8 pt. 12-30 VDC or 12-250 VAC isolated output module, 4 Form A (SPST) and 4 Form C (SPDT) relays, 8 commons (isolated), 10A/point, 40A/module, removable terminal			
F4-08TRS-2	8 pt. 12-30 VDC or 12-250 VAC isolated output module, 4 Form A (SPST) relays and 4 Form C (SPDT) relays, 8 commons (isolated), 5A/point, 40A/module, replaceable fuses, removable terminals			
D4-16TR	16 pt. 5-30 VDC or 5-250 VAC output module, 8 Form A (SPST) relays, 2 commons (isolated), 1A/point, 5A/common, removable terminals			
DL405 Analog	Input Modules			
F4-04ADS	4 channel isolated analog input module, 12 bit resolution, ranges: 0 - 5V, 0 - 10V, 1 - 5V, -5V to +5V, -10V to +10V, 0 - 20mA, 4 - 20mA			
F4-08AD	8 channel analog input module, 12 bit resolution, ranges: 4 to 20mA, 1 to 5V, 0 to 20mA, 0 to 5V, 0 to 10V, -5 V to $+5$ V, -10 V to $+10$ V			
F4-16AD-2	16 channel analog input module, 12 bit resolution, ranges: 0-5V, 0-10V			
DL405 Analog	Output Modules			
F4-04DAS-1	4 channel analog output module, 16 bit resolution, isolated, range: 4 to 20mA current sourcing			
F4-04DAS-2	4 channel analog output module, 16 bit resolution, isolated, range: 0-5V, 0-10V			
F4-08DA-2	8 channel analog output module, 12 bit resolution, range: 0-5V or 0-10V			
F4-16DA-2	16 channel analog output module, 12 bit resolution, range: 0-5V or 0-10V			

Dire	ctLOGIC PLC Modules for Use with GS2 AC Drives (cont.)			
Terminator I/O DC Output Modules				
T1K-08TD1	8 pt. 12-24 VDC current sinking output module, 4 points per common, 1.0A/point, 2 replaceable fuses (T1K-FUSE-1). (use with T1K-08B or T1K-08B-1 terminal base)			
T1K-16TD1	16 pt. 12-24 VDC current sinking output module, 4 points per common, 1.0A/point, 4 replaceable fuses (T1K-FUSE-1). (use with T1K-16B or T1K-16B-1 terminal base)			
Terminator I/O	Relay Output Modules			
T1K-08TR	8 pt. 5-30 VDC or 5-240 VAC output module, 8 Form A (SPST) relays, 4 points per common, 2.0A/point max., 2 replaceable fuses (T1K-FUSE-2). (use with T1K-08B or T1K-08B-1 terminal base)			
T1K-16TR	16 pt. 5-30 VDC or 5-240 VAC output module, 16 Form A (SPST) relays, 4 points per common, 2.0A/point max., 4 replaceable fuses (T1K-FUSE-2). (use with T1K-16B or T1K-16B-1 terminal base)			
T1K-08TRS	8 pt. 5-30 VDC or 5-240 VAC isolated relay output module, 8 Form A (SPST) relays, 1 point per common, 7.0A/point max., 8 replaceable fuses (T1K-FUSE-3). (isolation requires use of T1K-16B or T1K-16B-1 terminal base)			
Terminator I/O Analog Input Modules				
T1F-08AD-2	8 channel analog input module, 14 bit resolution (13 bit plus sign bit), range: 0-5VDC, 0-10VDC, +/-5VDC, +/-10VDC (Use with T1K-08B or T1K-08B-1 terminal base.)			
T1F-16AD-2	16 channel analog input module, 14 bit resolution (13 bit plus sign bit), range: 0-5VDC, 0-10VDC, +/-5VDC, +/-10VDC (use with T1K-16B or T1K-16B-1 terminal base.)			
Terminator I/O	Analog Output Modules			
T1F-08DA-2	8 channel analog output, 12 bit resolution, range: 0-5VDC, 0-10VDC, +/-5VDC, +/-10VDC. (use with T1K-08B or T1K-08B-1 terminal base)			
T1F-16DA-2	16 channel analog output, 12 bit resolution, range: 1-5VDC, 1-10VDC, +/-5VDC, +/-10VDC. (use with T1K-16B or T1K-16B-1 terminal base)			
Terminator I/O	Analog Input/Output Modules			
T1F-8AD4DA-1	8 channel analog input module and 4 channel analog output module. Inputs: 14 bit resolution (13 bit plus sign bit), range: -20 to 20mA, 0-20mA, 4-20mA. Outputs: 12 bit resolution, range:4-20mA, sinking or sourcing compatible. (use with T1K-08B or T1K-08B-1 terminal base)			
T1F-8AD4DA-2	8 channel analog input module and 4 channel analog output module. Inputs: 14 bit resolution (13 bit plus sign bit), range: 0-5VDC, 0-10VDC, +/-5VDC, +/-10VDC. Outputs: 12 bit resolution, range: 0-5VDC, 0-10VDC, +/-5VDC, +/-10VDC. (use with T1K-08B or T1K-08B-1 terminal base)			

Typical Connections to the GS2 Series AC Drive


The following drawings show some typical connections between the GS2 Series AC Drive and DirectLOGIC PLCs and modules.

DC Output Modules

- D0-05DD
- D0-05DD-D
- D0-06DD1
- D0-06DD1-D
- D0-10TD1

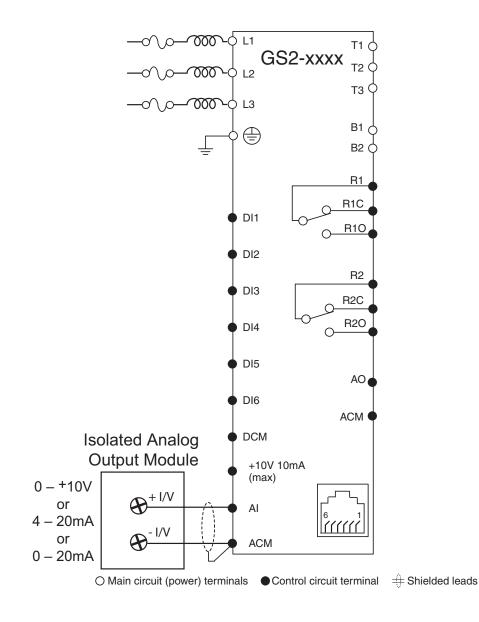
- D0-16TD1
- D2-16TD1-2
- D2-32TD1
- D4-08TD1
- D4-16TD1

- D4-32TD1
- T1K-08TD1
- T1K-16TD1

O Main circuit (power) terminals

Control circuit terminal

Shielded leads

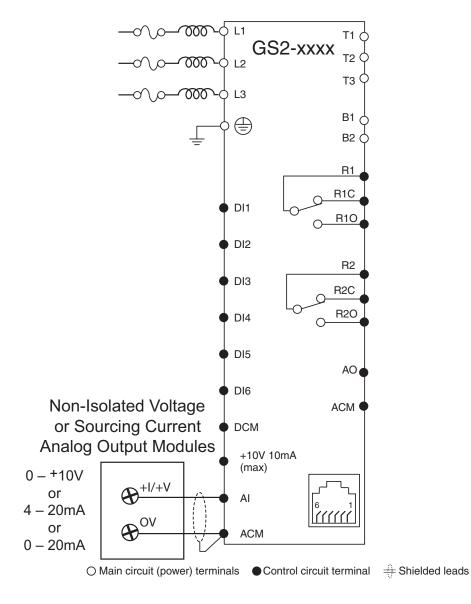

Isolated Analog Output Modules

• F2-02DAS-1

• F4-04DAS-1

• F2-02DAS-2

• F4-04DAS-2



Non-Isolated Voltage or Sourcing Current Analog Output Modules

- F0-02AD2DA-2
- F0-04AD2DA-1
- F0-04AD2DA-2
- F2-02DAS-1
- F2-02DAS-2
- F2-08DA-1

- F2-02DA-2
- F2-08DA-2
- F2-8AD4DA-1
- F2-8AD4DA-2
- F4-08DA-2
- F4-16DA-2

- T1F-08DA-2
- T1F-16DA-2
- T1F-8AD4DA-1
- T1F-8AD4DA-2

INDEX

Auto Voltage Regulation; 4–45 Auto-torque Boost; 4–20 AC Drives - Purpose; 1–3 В Accel 1 to Accel 2 Frequency Transition; 4–16 Acceleration S-Curve; 4–14 Base-Block Time for Speed Search; 4-48 Acceleration Time; 4-13 Block Transfer Parameters; 4–58, 5–29 Accessories; 2-12, A-1 Braking Resistors; 2–12, A–8 AFD - Adjustable Frequency Drive; 1–3 Agency Approvals; 1–8, 2–7 Air Flow; 2–3 Cables Ambient Conditions; 1-8, 2-2 Configuration Cables; A-25 Amps/Current Keypad Cables; A-25 Motor Nameplate Amps; 4-11 CE; 1-8 Over-Current Stall Prevention; 4–47 CEC; 2-7 Overload; 4-43 Circuit Connections Warnings & Notes; 2-6 **Analog Input** Communicating with DirectLogic PLCs; 5–12 Examples; 4-34 Communicating with Third-party Devices; 5–30 Gain; 4-33 Loss of ACI Signal; 4-40 Communication Address; 4-56 Offset; 4–33 Communication Connections to DL PLCs; 5–12 Offset Polarity; 4–32 Communication Distribution Blocks; A-26 Reverse Motion Enable; 4-33 Communication Parameters; 4–56 Analog Output; 4–40 Communication Protocol; 4-56 Gain; 4-40 Communication Transmission Speed; 4–56 Signal; 4-40 Compatibility, GS2 and Direct LOGIC PLCs; B-2 Analog Parameters; 4-32 Configuration Cable; A–25 Applicable Codes; 2–7 Configuration Software; A-22 Auto Adjustable Accel/Decel; 4-46 Configuration Cable; A–25

Auto Restart After Fault; 4-44

Configuring/Programming the AC Drive	Display Function; 4-55
Keypad Configuration; 3–5	Distribution Blocks, Communication; A–26
Software Configuration; A-22	_
Configuration Cable; A-25	E
Contactor; 2–6, 2–12	Electro-Magnetic Interference; 2–7
Contents of Drive Package; 1–3	EMI; 2–7
Control Terminals & Wiring; 1–4, 2–10, 2–11	
cUL; 1–8, 2–7	EMI Filters; 2–12, A–10
Current/Amps	Enclosure Rating; 1–8, 2–2
Motor Nameplate Amps; 4–11	Environmental Conditions; 1–8, 2–2
Over-Current Stall Prevention; 4-47	Error Codes; 5–9, 6–3
Overload; 4–43	Ethernet Interface; A–20
Б	Examples
D	Analog Input Examples; 4–34
DC Injection	DL PLC Program Example for Modbus; 5–16 External Fault
Current Level; 4–18	External Fault, Digital Input; 4–23, 4–24
during Start-up; 4–18	External Fault, Digital Input, 4–23, 4–24 External Fault, Serial Comm; 4–60
during Stopping; 4–18	External Parts; 1–4
Start-point; 4–18	Cover - lower terminals; 1–4
Decel 1 to Decel 2 Frequency Transition; 4–16	Cover - upper terminals; 1–4
Deceleration S-Curve; 4–15	DIP Switches; 1–4
Deceleration Time; 4–14	Keypad; 1–4
Default, Restore Parameters; 4–57	Mounting Screw Holes; 1–4
Desired Current; 4–31	Nameplate Label; 1–4
Desired Frequency; 4–31	Terminals - control wiring; 1-4
Dimensions; 2–4	Terminals - power input wiring; 1–4
Direction Command	Terminals - power output wiring; 1–4
Digital Input FWD/REV; 4-22	Ventilation Slots; 1–4
Keypad FWD/REV; 3–3	г
Serial Comm Direction Command; 4-59	F
DirectLOGIC Modbus PLC Programming; 5–16	Fault Codes; 6–3
DirectLOGIC PLCs; B-2	Fault Record; 4–50
DirectLogic PLCs, Communicating with; 5–12	Fault Reset
Disable	External DI Fault Reset; 4-23, 4-24
Digital Input Disable; 4-23, 4-29	Keypad Fault Reset; 3-3
Disable PID; 4–23	Serial Comm Fault Reset; 4-60
Disconnect switch; 2–6	Fault, External; 4–23, 4–24, 4–60
Display; 3–2	Filters
Display Parameters; 4–55	EMI Filters; 2–12, A–10
Display Frequency Scale Factor; 4-55	RF Filters; A–16

Frequency	Keypad; 3–2		
Jog Frequency; 4–41	Keypad Cables; A-25		
Mid-point Frequency; 4-20	Keypad, Spare; A-25		
Minimum Output Frequency; 4-21			
Motor Base Frequency; 4–12	L		
PID Output Frequency Limit; 4–54	Label, Nameplate Information; 1–3		
PWM Carrier Frequency; 4–21	LED Display; 3–2		
Source of Frequency Command; 4–32	LED Indicators; 3–2		
Volts/Hertz Parameters; 4–19	Lower Bound		
Frequency Command / Speed Reference			
Serial Comm Speed Reference; 4–59	of Output Frequency; 4–49		
Source of Frequency Command; 4–32 Function Keys; 3–3	M		
Fuses; 2–12, A–17	Maintenance; 6–2		
	Manufacturer Model Information; 4-61		
G	Maximum Allowable Power Loss Time; 4–48		
Ground Loops; 2–6	Maximum Speed Search Current Level; 4–48		
Grounding Resistance; 2–6	Memory Addresses for Parameters; 5–4		
GS Series Number; 4–60	Mid-point Frequency; 4–20		
GS-EDRV Ethernet Interface; A–20	Mid-point Voltage; 4–20		
GSOFT Configuration Software; A–22	Minimum Clearances; 2–3		
Configuration Cable; A–25	Minimum Output Frequency; 4–21		
g,	Minimum Output Voltage; 4–21		
l	Modbus ASCII; 5–30		
Inspection; 6–2	Modbus Communication with Third-Party Devices; 5–30		
Annual; 6–2	Modbus Communications; 5–1		
Monthly; 6–2	Modbus Connections to DL PLCs; 5-12		
Installation; 2–3 Air Flow; 2–3	Modbus Control, PLC Programming; 5–16		
Dimensions; 2–4	Modbus RTU; 5–30		
Minimum Clearances; 2–3	Model Information; 4-61		
Inverter; 1–3	Model Number Explanation; 1-3		
	Momentary Power Loss; 4–44		
J	Motor Base Frequency; 4–12		
	Motor Base RPM; 4–12		
Jog Command	Motor Maximum RPM; 4-12		
Digital Input Jog Command; 4–23, 4–25	Motor Nameplate Amps; 4–11		
Serial Comm Jog Command; 4–60	Motor Nameplate Voltage; 4–11		
Jog Frequency; 4–41	Motor Parameters; 4–11		
K	Motors		

Single-Phase; 2–7	PID DI Setpoint Bits; 4–23, 4–25
Three-Phase; 1–3	PID Deviation Alarm; 4–30
Mounting Screw Holes; 1–4, 2–4	PID Parameters; 4–51
Multi-Function Input Disable; 4–29	Derivative Control; 4–53
Multi-function Input Terminals; 4–22	Derivative Filter Time Constant; 4–54
Multi-function Output Terminals; 4–30	Feedback Loss Operation; 4-54
Multi-Speed	Feedback Signal Loss Detection Time; 4-54
Auto Voltage Regulation; 4–45	Input Terminal for PID Feedback; 4–51
Digital Input Multi-Speed Bits; 4–23, 4–25	Integral Control; 4–53
Multi-Speed Settings; 4–42	Keypad Setpoint; 4–52
. 1	Multi-setpoints; 4–52
N	Output Frequency Limit; 4–54
Nameplate Label Information; 1–3	Proportional Control; 4–53
NEC; 2–7	PV 100% Value; 4–52
NEMA Publications; 1–2	PV Setpoint Source; 4–52
NEWA Fublications, 1–2	Upper Bound for Integral Control; 4–54
0	PID SP Digital Inputs; 4–23
	PLC Module Typical Connections; B–7
Operation Command; 4–22	PLC Modules; B–2
Over-Current	PLC Programming for Modbus Control; 5–16
Stall Prevention During Acceleration; 4–47	PLCs, DirectLOGIC, Communicating with; 5–12
Stall Prevention During Operation; 4–47	Potentiometer
Overload; 4–43	Keypad Potentiometer; 3–3
Over-Torque	Remote Potentiometer; 2–11
Detection Level; 4–46	Power Terminals & Wiring; 1–4, 2–7, 2–8, 2–9,
Detection Mode; 4–46	2–11
Detection Time; 4–46	Present Fault Record; 4–50
Over-Voltage	Preset Parameters; 4–41
Stall Prevention; 4–45	Programming/Configuring the AC Drive
Р	Keypad Configuration; 3–5
r	Software Configuration; A–22
Parameter Lock; 4–57	Configuration Cable; A–25
Parameter Memory Addresses; 5–4	Protection Parameters; 4–43
Parameter Summary; 4–2	Purpose of AC Drives; 1–3
Parameters, Detailed Listings; 4–11	PWM Carrier Frequency; 4–21
Restore Parameters to Default Settings; 4–57	R
PID	11
PID Deviation Alarm; 4–30	Ramp Parameters; 4–13
PID Deviation Level; 4-31	Reactors; 2–12, A–2
PID Deviation Time; 4–31	Reset, Fault

External DI Fault Reset; 4-23, 4-24	Specifications; 1–5		
Keypad Fault Reset; 3-3	Speed Reference / Frequency Command		
Serial Comm Fault Reset; 4-60	Serial Comm Speed Reference; 4-59		
Resistors, Braking; 2–12, A–8	Source of Frequency Command; 4-32		
Restore Parameters to Default Values; 4-57	Status Addresses; 5–9		
Reverse Operation Inhibit; 4-44	Status Monitor; 5–9, 5–10		
RF Filters; A–16	Status of the AC Drive		
RPM	Keypad; 3–4		
Motor Base RPM; 4–12	Serial Comm; 5–9		
Motor Maximum RPM; 4–12	Stop		
RS-232 Communication Interface; 5–12, 5–30	Digital Input Stop; 4-22		
RS-232 Selector DIP Switches; 1-4, 5-12,	Keypad Stop; 3–3		
5–30	Stop Methods; 4–13		
RS-232 to RS-485 Conversion; 5–13	Supplemental Publications; 1–2		
Wiring Connections to DL PLCs; 5–12	NEMA Publications; 1–2		
RS-485 Communication Interface; 5–13, 5–14, 5–30	Т		
RS-232 to RS-485 Conversion; 5–13	Th-: C 1 2		
RS-485 Comm Distribution Board; A–26	Technical Support; 1–2		
RS-485 Selector DIP Switches; 1–4, 5–13,	Three-Phase Motors; 1–3		
5–30 Wiring Connections to DL PLCs: F. 12, F. 14	Time Out Detection; 4–57		
Wiring Connections to DL PLCs; 5–13, 5–14 Run Command	Time Out Duration; 4–57		
Digital Input Run Command; 4–22	Torque		
Keypad Run; 3–3	Over-Torque Detection; 4–46		
Serial Comm Run Command; 4–59	Torque, Constant; 3–6		
Schar Committan Communa, 1 33	Torque, Variable; 3–11		
S	Transmission Fault Treatment; 4–57		
	Troubleshooting; 6–3		
Safety Codes; 2–7	- 11		
Select method for 2nd Accel/Decel; 4–16	•		
Serial Comm Speed Reference; 4–59	UL; 1–8, 2–7		
Short Circuit Withstand Current; 2–7	Upper Bound		
Single-Phase Motors; 2–7	for PID Integral Control; 4-54		
Skip Frequency; 4–17	of Output Frequency; 4-49		
Skip Frequency Band; 4–17	1/		
Slip Compensation; 4–20	V		
Software, Configuration; A–22	Ventilation Slots; 1–4		
Configuration Cable; A-25	VFD - Variable Frequency Drive; 1–3		
Source of Frequency Command; 4–32	Voltage Mid-point Voltage; 4–20		
Source of Operation Command; 4–22			
Special Symbols; 1–2	point totage, 1 20		

Minimum Output Voltage; 4–21 Motor Nameplate Voltage; 4–11 Over-Voltage Stall Prevention; 4–45 Volts/Hertz Parameters; 4–19 Volts/Hertz Parameters; 4–19

W

Warning Messages; 6–6
Warnings & Notes - circuit connections; 2–6
Warnings & Notes - general; 1–2
Wiring & Circuit Connections; 2–6
Basic Wiring Diagram; 2–11
Control Circuit Wiring; 2–7, 2–10
Main Circuit Wiring; 2–7, 2–8, 2–9, 2–11
Serial Comm Wiring Connections; 5–12
Shielded Wiring; 2–10
Warnings; 2–6
Wiring Notes; 2–6
Wiring Connections to DL PLC Modules; B–7

